

Site Assessment Report for Building A902 Truck Fill Stand

at

Naval Air Station

Key West, Florida

Southern Division Naval Facilities Engineering Command

Contract Task Order 0031

April 1999

SITE ASSESSMENT REPORT for **BUILDING A902** TRUCK FILL STAND

BOCA CHICA FIELD, NAVAL AIR STATION KEY WEST, FLORIDA

Submitted to: **Southern Division Naval Facilities Engineering Command** 2155 Eagle Drive North Charleston, South Carolina 29406

> Submitted by: Tetra Tech NUS, Inc. 661 Andersen Drive Foster Plaza 7 Pittsburgh, Pennsylvania 15220

CONTRACT NUMBER N62467-94-D-0888 CONTRACT TASK ORDER 0031

APRIL 1999

PREPARED UNDER THE SUPERVISION OF:

PAUL E. CALLIGAN, P.G. TASK ORDER MANAGER

FLORIDA LICENSE No. PG-0001864

TETRA TECH NUS, INC. TALLAHASSEE, FLORIDA APPROVED FOR SUBMITTAL BY:

PROGRAM MANAGER

TETRA TECH NUS, INC.

PITTSBURGH, PENNSYLVANIA

PROFESSIONAL CERTIFICATION

Site Assessment Report Truck Fill Stand, Building A902 Naval Air Station, Key West, Florida

This Site Assessment Report was prepared under the direct supervision of the undersigned geologist using geologic and hydrogeologic principles standard to the profession at the time the report was prepared. If conditions are determined to exist that differ from those described, the undersigned geologist should be notified to evaluate the effects of additional information on the assessment described in this report. This report was developed specifically for the referenced site and should not be construed to apply to any other site.

Paul E. Calligan, P.G.

Florida License No. PG-0001864

4/23/99 Date

EXECUTIVE SUMMARY

Tetra Tech NUS (TtNUS) has completed a Site Assessment (SA) for Building A902 Truck Fill Stand at the Naval Air Station, Key West, Florida. The SA was conducted in accordance with the requirements of Chapter 62-770, Florida Administrative Code (F.A.C.). The assessment report was submitted to the Florida Department of Environmental Protection (FDEP) for approval.

TtNUS performed the following tasks during the SA:

- Reviewed available Navy documents and identified potential sources and receptors for petroleum hydrocarbons in the vicinity, evaluated private potable wells within a 0.25-mile radius and public water supply wells within a 0.50-mile radius, located nearby surface water bodies, and determined surface hydrology and drainage.
- Reviewed previously prepared Closure Report for Tank A902 to determine appropriate boring locations and monitoring well placements.
- Conducted site survey to identify utilities and constructed a site plan.
- Performed direct push investigation which included the installation of 40 soil borings to collect soil
 and groundwater samples for field screening for BTEX and total petroleum hydrocarbons diesel
 range organics (TPH-DRO) using a mobile laboratory.
- Collected three soil samples from selected soil borings for laboratory analysis of the Kerosene Analytical Group parameters.
- Collected one sediment sample from the wetland located northwest of the site for laboratory analysis of the Kerosene Analytical Group parameters.
- Installed three piezometers to approximately 12 feet bls.
- Installed seven shallow monitoring wells to approximately 12 feet below land surface (bls) and one vertical extent monitoring well to approximately 35 feet bls.
- Collected groundwater samples from each site monitoring well for laboratory analysis of the Kerosene Analytical Group parameters.
- Surveyed monitoring well top of casing elevations and collected depth to groundwater measurements.
- Evaluated groundwater flow direction and gradient.
- Performed specific capacity testing on three monitoring wells to evaluate the hydraulic conductivity of the surficial aquifer.

A wetland is located immediately downgradient of the source area. Based on the proximity to the wetland, Rule 62-770.680 specifies that the surface water cleanup criteria also applies to the groundwater at this

site. In addition, the surficial aquifer at the site is classified as a G-III aquifer due to the high total dissolved solids content. Therefore, the GCTLs used for this site are the lower of Tables VII (surface water criteria) and VIII (groundwater of low yield/poor quality) from Chapter 62-770, F.A.C.

Laboratory analytical results from groundwater samples indicate that TPH, PAH and lead concentrations exceed Groundwater Cleanup Target Levels (GCTLs). In addition, field screening data and laboratory analytical results from soil samples indicate that hydrocarbon concentrations in the soil exceed the Soil Cleanup Target Levels (SCTLs) established in Chapter 62-770, F.A.C. (Table IV, I#). "Excessively contaminated" soil, as defined by Chapter 62-770.200 F.A.C., is present at the site. The "excessively contaminated soil" extends from near the surface to the water table at an average depth of approximately 3 feet bls in the vicinity of the former UST location to the west of the dispenser island, as well as a smaller area to the east of the dispenser island.

The upgradient and lateral extent of the dissolved hydrocarbon plume has been defined by the placement of on-site monitoring wells (with the exception of low lead levels in the upgradient well). In addition, the vertical extent of the dissolved hydrocarbon plume has been defined. The downgradient extent of the dissolved hydrocarbon plume has not been defined due to the proximity to the wetland.

Tetra Tech NUS recommends that a source removal be initiated to remediate the contaminated soil at the site. Subsequent to source removal, a supplemental assessment should be conducted to evaluate the impact of the source removal on the dissolved hydrocarbon concentrations.

TABLE OF CONTENTS

SECTION		PAGE
EXECUTIVE	SUMMARY	ES-1
1.0 INTROD	UCTION	1-1
1.1	PURPOSE AND SCOPE	
1.2	SITE DESCRIPTION AND SETTING	
1.2.1	Location	
1.2.2	Site Description	
1.2.3	Topography and Drainage	1-2
1.2.4	Geology and Hydrology	1-6
1.2.5	Land Use	1-6
1.2.6	Potable Water Well Survey	1-7
1.3	SITE BACKGROUND	1-7
1.3.1	Site History and Operations	1-7
1.3.2	Structural Integrity of Tanks and Lines	1-8
1.3.3	Closure Assessment	1-8
1.3.4	Initial Remedial Action	1-8
1.3.4.1	Soil Removal	1-8
1.3.4.2	Monitoring Well Overdevelopment	1-9
2.0 SUBSUF	RFACE INVESTIGATION METHODS	2-1
2.1	QUALITY ASSURANCE	
2.2	SOIL BORINGS INSTALLATION	
2.2.1	Direct-Push Soil Borings	2-1
2.2.2	HSA Soil Borings	
2.3	MONITORING WELL AND PIEZOMETER CONSTRUCTION	
2.3.1	Piezometer Construction	2-2
2.3.2	Monitoring Well Construction	
2.4	MEDIA SAMPLING METHODOLOGY	
2.4.1	Lithologic Sampling	
2.4.2	Soil Vapor Screening	
2.4.3	Soil Mobile Lab Screening	2-6

TABLE OF CONTENTS (Continued)

SECTIO	<u>on</u>	PAGE
2.4	4.4 Soil and Sediment Analytical Sampling	2-6
2.4	4.5 Groundwater Mobile Lab Screening	
2.4	4.6 Groundwater Analytical Sampling	2-7
2.4	4.7 Free Product Sampling	2-8
2.4	4.8 IDW Sampling	
2.		
2.	.5.1 Water Level Measurements	2-8
2.	.5.2 Aquifer Characteristics	
2.	.5.3 Groundwater Flow Velocity and Transmissivity	
2.	.5.4 Tidal Influence Survey	2-11
3.0 RES	SULTS OF INVESTIGATION	
3.		
3.	.1.1 Lithology	
3.	.1.2 Aquifer Characteristics and Classification	3-1
3.	.1.3. Tidal Influence	
3.	.2 SOIL AND SEDIMENT QUALITY	3-4
3.	.3 WATER QUALITY	3-9
4.0 DIS	SCUSSION	4-1
5.0 CO	ONCLUSIONS AND RECOMMENDATION	5-1
60 RF	FFRENCES	6-1

TABLE OF CONTENTS (Continued)

SECTION	PAC	迮
APPENDIC	<u>ces</u>	
Α	CAR SUMMARY SHEETA	.1
В	TANK CLOSURE REPORTB	1
С	IDW MANIFESTSC	.1
D	SOIL BORING LOGSD.	1
E	WELL COMPLETITION LOGSE-	1
F	MOBILE LABORATORY SCREENING RESULTSF-	1
G	LABORATORY ANALYTICAL REPORTS FOR SOILG.	.1
Н	LABORATORY ANALYTICAL REPORTS FOR GROUNDWATERH-	1
l	GROUNDWATER SAMPLE LOG SHEETSI-1	j
J	ANALYTICAL REPORTS FOR SOIL PRE-DISPOSAL CHARACTERIZATIONJ-	1
K	SPECIFIC CAPACITY TEST DATA AND HYDRAULIC CONDUCTIVITY	
	CALCULATIONSK-	1
L	GROUNDWATER GRADIENT AND FLOW CALCULATIONSL-	1
M	TIDAL SURVEY DATAM	1
	TABLES	
<u>NUMBER</u>	PAG	E
2-1 WELL (CONSTURCTION DETAILS2-	3
3-1 GROUN	NDWATER ELEVATION SUMMARY3-	2
3-2 SOIL S	CREENING SUMMARY3-	5
3-3 SOIL A	ND SEDIMENT ANALYTICAL SUMMARY3-	3
3-4 GROUN	NDWATER MONITORING WELL ANALYTICAL SUMMARY3-	13

FIGURES

NUMBER	PAGE
1-1 FACILITY LOCATION MAP	1-3
1-2 TOPOGRAPHIC MAP	1-4
1-3 SITE PLAN	1-5
3-1 GROUNDWATER ELEVATION CONTOUR MAP	3-3
3-2 SOIL HEADSPACE ANALYSIS DATA MAP	3-7
3-3 DISSOLVED VOA CONCENTRATIONS	3-10
3-4 DISSOLVED PAH CONCENTRATIONS	3-11
3-5 DISSOLVED TRPH CONCENTRATIONS	3-12

1.0 INTRODUCTION

1.1 PURPOSE AND SCOPE

A Site Assessment (SA) was conducted by Tetra Tech NUS (TtNUS) for the US Navy (Navy) Southern Division Naval Facilities Engineering Command under Contract Task Order 0031, for the Comprehensive Long-term Environmental Action Navy (CLEAN III), Contract Number N62467-94-D-0888. The SA was conducted at the Truck Fill Stand, Building A902 (the Site) located at the Naval Air Station (NAS) in Key West, Florida. The Florida Department of Environmental Protection (FDEP) Facility Identification Number is 449400050.

The purpose of this SA was to determine the nature and extent of petroleum hydrocarbon impacted soil and groundwater in accordance with the requirements of Chapter 62-770, Florida Administrative Code (F.A.C.). Taking the following actions at the Truck Fill Stand fulfilled this objective:

- Review of all available applicable documents such as closure reports, discharge reports, maintenance records, and construction plans.
- Survey of potential sources in the vicinity of the Truck Fill Stand.
- Survey of potential receptors in the vicinity of the Truck Fill Stand, including public and private water supplies and surface water bodies.
- Completion of a surface and subsurface soil investigation, as well as an initial groundwater screening, using direct push technology (DPT).
- Mobile laboratory screening of soil and groundwater samples for BTEX and total petroleum hydrocarbons - diesel range organics (TPH-DRO) to aid in determining the optimum number and location of permanent monitoring wells.
- Installation of both shallow monitoring wells and a vertical extent monitoring well.
- Collection of soil, sediment and groundwater samples for laboratory analysis for constituents of the Kerosene Analytical Group.
- Determination of groundwater flow direction, hydraulic conductivity, hydraulic gradient, and transmissivity.

A SAR Summary Sheet, as required by Chapter 62-770, F.A.C., is included in Appendix A.

1.2 SITE DESCRIPTION AND SETTING

1.2.1 Location

The Truck Fill Stand is part of the Fuel Farm Fill Station at Boca Chica Air Field (Figure 1-1). Boca Chica Air Field is located on Boca Chica Key and is part of NAS Key West, Florida. NAS Key West is located approximately 150 miles southwest of Miami on the second to last major islands of the Florida Keys. The Overseas Highway, US Highway 1, connects the Florida Keys to the mainland. NAS Key West is in southern Monroe County, Florida. The U.S. Navy manages 6,323 acres of land divided into twenty separate tracts in the lower Florida Keys, concentrated around Key West and Boca Chica Key. Specifically, the Truck Fill Stand is located within Section 29 of Township 67 South, Range 26 East, as shown on United States Geological Survey (USGS) Boca Chica Key, Florida, 7.5 Minute Series Quadrangle (Figure 1-2).

1.2.2 Site Description

The Truck Fill Stand is an active facility used for filling tanker trucks used to refuel aircraft. Fuel is piped to the Truck Fill Stand from a tank farm located approximately 4000 feet southwest of the site, on the opposite side of the air field. The Truck Fill Stand is the former location of a 1,000-gallon underground storage tank (UST), A902B. UST A902B was installed in 1990 and constructed of plate steel. The UST was used as a water canting storage tank for the jet propellant (JP) 5 fuel filter system at the Truck Fill Stand. Figure 1-3 is a site plan showing the general layout of the site.

1.2.3 Topography and Drainage

The NAS Key West Complex lies in the southeastern Coastal Plain physiographic province. A series of Pliestocene marine reefs control the topography of the Coastal Plain in southern Florida (ABB-ES, 1995). The topography of Boca Chica Key and Key West is generally flat. Average land surface elevations are less than 5 feet above mean sea level (msl).

Boca Chica Key is approximately 3 miles wide and 3 miles long. The land surface at the center of the key is generally flat and gently slopes toward the shoreline. Drainage on the key is toward the Atlantic Ocean and Gulf of Mexico, which completely surround the Key. Both of these bodies of water are classified as Class G-III Waters in the vicinity of the Florida Keys. Additionally, the Great White Heron National Wildlife Refuge and the Key West National Wildlife Refuge are

TTNUS/TLH/99-028/7586/5.4

1-3

CTO 0031

FORM CADD NO. SDIV_AV.DVG - REV 0 - 1/20/98

located in the immediate vicinity of NAS Key West. These areas are classified as Outstanding Florida Waters and receive the highest degree of protection from the State (BRE, 1997).

The land surface at the truck fill stand area and former UST is covered with concrete and asphalt, which slopes to the northeast and northwest. A wetland is located immediately to the northwest of the site. The perimeter of the wetland appears to be seasonally wet while the central portion of the wetland appears to contain standing water year round. The area to the south of the site is covered with concrete and asphalt taxiways and runways.

1.2.4 Geology and Hydrology

The lower Keys, which are within the southern geomorphic division of Florida, were formed during the Pliestocene era. The Keys are known as the "Oolitic Keys", a reference to the Oolitic Member of the Miami Limestone. The Oolitic Member consists of variably sandy, fossiliferous limestone composed primarily of ooids. The Oolitic Member is divided into two lithofacies: an ooid calcarenite and an oomoldic-recrystalline facies. The Key Largo Limestone underlies the Miami Limestone. The Key Largo Limestone is a light gray to light yellow coralline limestone comprised of coral heads encased in a matrix of calcarenite. In the Key West area, the Miami Limestone is approximately 27 feet thick and the Key Largo limestone is greater than 270 feet thick (BRE, 1997).

The soils on Boca Chica Key are primarily rockland with some filled area and mangrove swamps. Other major soil groups on the Key consist of gravelly sand and calcareous clay, marl, and weathered bedrock (ABB-ES, 1995).

The surficial aquifer system present in the lower Keys is an unconfined, porous, highly permeable solution-riddled unit, as described above. Rainfall recharge seeps quickly into the ocean and saltwater intrusion is common. The water table ranges in depth from less than 1-foot to approximately 2.5 feet below msl and fluctuates diurnally due to tidal effects. The surficial aquifer is non-potable and classified G-III due to its high total dissolved solid content.

1.2.5 <u>Land Use</u>

Boca Chica Key is almost entirely a military-use area, with the exception of US Highway 1 which crosses the northern portion of the key.

1.2.6 Potable Water Well Survey

No freshwater public or registered domestic wells are in use on NAS Key West (ABB-ES, 1995). Some residences on Boca Chica Key have wells that withdraw water from the surficial aquifer for non-potable uses. Potable water is supplied to all of the Florida Keys. The Florida Keys Aqueduct Authority (FKAA) operates and maintains the Florida Keys Aqueduct, which supplies potable water to all of the Keys. This water is drawn from wells near Florida City in southeastern Dade County. It is pumped 130 miles through a water main that parallels US Highway 1 and terminates in Key West. The Monroe County Health Department recognizes the public water supply as the only potable water source available on Boca Chica Key.

Alternative sources of potable water and non-potable water used in the Keys include private cisterns, private wells utilizing reverse osmosis, home desalination systems, and bottled water. The number of people who may be using water from these alternative sources is unknown. The best estimate of the number of people using local groundwater for non-potable domestic purposes is less than 500 people (IT Corporation, 1993).

Multiple fire control wells have been installed at the facility. Based on information provided by Base personnel, these wells are typically constructed of 12-inch diameter PVC casing extending from the ground surface to a depth of 20-feet. Beneath the casing, an open hole boring extends to a minimum of 50-feet and a maximum of 75-feet below land surface. One of these fire wells is located approximately 150-feet southwest of the site.

1.3 SITE BACKGROUND

1.3.1 Site History and Operations

A U.S. Naval Base was first established on Key West in 1823. The Base was expanded during the Mexican War, the Spanish-American War, and again during World War I. In 1939 a seaplane base was opened and in 1942, the Boca Chica Air Field was constructed. During World War II, Key West Naval Air Station was established as the Sixth Naval District Headquarters. Since that period, the role of the military at NAS has decreased. Currently, NAS Key West maintains aviation operation, a research laboratory, communications intelligence, counter-narcotics air surveillance operations, a weather service and other activities. Boca Chica Air Field encompasses approximately 3,250 acres.

According to Base personnel, the Truck Fill Stand has been in operation since approximately 1945. UST A902B was reportedly installed in 1990. During a preliminary visit to the site, the supervisor of the truck fill stand operation indicated that a tanker-truck had ruptured after a collision with the canopy supports in 1986. Approximately 3,000 gallons of JP-5 were discharged to the ground surface. No record or discharge form recording this event was found during TtNUS' records search.

1.3.2 Structural Integrity of Tanks and Lines

According to Omega Environmental Services (OES), UST A902B was "in excellent condition with no sign of leaks" at the time of removal (OES, 1995). No records of tank and line tightness testing could be located for this tank.

1.3.3 Closure Assessment

In September 1995, OES was contracted to perform a closure assessment on UST A902B. The UST and it's associated piping and vents were removed on September 28, 1995. A Closure Assessment Report, Closure Assessment Form, and UST Installation And Removal Form were filed on October 25, 1995. The report noted that both contaminated soil and free phase petroleum product were present in the UST excavation area. In addition, the report stated that the tank appeared in excellent condition with no signs of leaks. The report concluded that the groundwater contamination detected might have come from a different source or from spillage. The NAS Public Works Department submitted a Discharge Notification Form to the FDEP on July 30, 1996. The closure report, closure forms, and discharge notification form are included in Appendix B.

1.3.4 Initial Remedial Action

1.3.4.1 Soil Removal

In an October 3, 1996 letter to the Florida Department of Health and Rehabilitative Services, the Engineering Director of the NAS Key West Public Works Department reported that approximately 24 cubic yards of contaminated soil were excavated and removed from the former UST location on August 28, 1996. The letter indicated that the excavation area was approximately 12 feet in diameter and extended from the ground surface to the water table. It was noted that the soil was contaminated from the ground surface to the water table. The estimated total volume of contaminated soil removed was 24 cubic yards.

1.3.4.2 Monitoring Well Overdevelopment

Evaluation of the laboratory analytical data from groundwater samples collected from the monitoring wells installed during this investigation indicated that dissolved hydrocarbon concentrations exceeded regulatory target levels in the upgradient and downgradient wells. The FDEP was contacted in September 1998 to discuss these results. During this discussion, the FDEP recommended that monitoring wells A902-MW01 (source), A902-MW02 (downgradient) and A902-MW07 (upgradient) be overdeveloped in an attempt to lower the contaminant concentrations to within target levels.

On November 17 through 19, 1998, TtNUS personnel visited the site to overdevelop these three wells. Each well was pumped for a period of 72 hours with a submersible pump. TtNUS personnel returned to the site on December 2, 1998 to collect groundwater samples from these three wells. The sampling methodology and laboratory analytical results are discussed in Section 2.4.6 and Section 3.3 respectively.

2.0 SUBSURFACE INVESTIGATION METHODS

2.1 QUALITY ASSURANCE

The site investigation was conducted in accordance with the Standard Operating Procedures prescribed by the FDEP Quality Assurance Section Document DER-001/92, and adopted by the TtNUS Comprehensive Quality Assurance Plan (CQAP) Number 980038.

2.2 SOIL BORING INSTALLTION

Soil borings at the Truck Fill Stand were installed using two advancement methods: direct push technology (DPT) and hollow stem augers (HSA). Prior to breaking ground at any soil boring location, TtNUS reviewed utility drawings provided by the NAS Key West public works department, and requested utility mark-outs from Sunshine One-Call.

All soil boring advancement equipment was decontaminated prior to and following each installation according to TtNUS' CQAP. All rinse water generated during the decontamination of equipment was containerized in 55-gallon drums, sampled, and removed for proper disposal.

In addition to liquid investigative derived waster (IDW), soil cuttings were also generated during soil boring installation. Soil cuttings were also placed in a 55-gallon steel drums, sampled, and removed for proper disposal. Transport manifests and disposal records for all IDW are provided in Appendix C. Soil boring lithologic logs are presented in Appendix D.

2.2.1 <u>Direct-Push Soil Borings</u>

TtNUS conducted a soil vapor assessment at the Truck Fill Stand on June 23 through June 26, 1998. DPT soil borings were advanced for the dual purpose of collecting soil and groundwater samples. Forty soil borings (A902-SB01 through A902-SB40) were advanced in the area around the former UST system. Soil samples were collected from each boring for the purpose of organic vapor screening, mobile laboratory screening, and for lithologic description. Soil borings were advanced using an EnviroCore, truck mounted, direct-push, hydraulic soil probe. Soil samples were collected continuously using three-foot long stainless steel samplers lined with plastic sleeves. DPT soil borings were typically terminated approximately 3 feet below the surface of the water table. Three of the DPT soil borings were used to install piezometers and were terminated approximately 9 feet below the surface of the water table.

Subsequent to evaluation of the field screening data, three additional DPT soil borings (A902-SB41 through A902-SB43) were advanced to obtain samples for laboratory analysis to confirm the field screening data. These borings were advanced using a GeoProbe, truck mounted, direct-push, hydraulic soil probe.

2.2.2 HSA Soil Borings

On August 25 and 26, 1998, eight soil borings, A902-MW01, A902-MW02, A902-MW03, A902-MW04, A902-MW05, A902-MW06, A902-MW07 and A902-MWD8 were drilled by Precision Drilling using HSA drilling techniques. HSA soil borings were advanced for the installation of groundwater monitoring wells. During the advancement of the deep monitoring well boring (A902-MWD8), soil samples were collected continuously from the surface to the total depth of the boring. The samples were used to characterize the site lithology and/or provide additional assessment data on soil vapor concentrations in the area. These soil samples were collected through the 4.25-inch augers with steel split-spoon samplers. The split-spoon samplers were 2-inch inside diameter (ID) and 2-feet long. They were advanced ahead of the lead auger with a weighted hammer in order to collect a relatively undisturbed soil sample.

2.3 MONITORING WELL AND PIEZOMETER CONSTRUCTION

2.3.1 Piezometer Construction

Piezometers were installed in conjunction with the DPT soil boring procedures discussed above in Section 2.2.1. Piezometers A902-P1, A902-P2 and A902-P3 were installed to obtain water level measurements to determine relative groundwater elevations and flow direction to aid in the placement of permanent monitoring wells. The piezometers were constructed of 0.75-inch ID, flush-threaded, schedule 40 PVC riser from 0 to 2 feet bls with 0.010-inch slotted screen interval from 2 to 12 feet bls. 20/30 silica sand was used as the filter media from 1 to 12 feet bls. A 6-inch layer of bentonite pellets was placed above the sand pack and hydrated. The remainder of the annulus was grouted to within 3-inches of the top of casing with a Type I Portland Cement/Bentonite slurry. The piezometers were secured with a locking water tight cap within an 8-inch diameter steel manhole. Piezometer construction details are summarized on Table 2-1. Well completion logs are provided in Appendix E.

TABLE 2-1: WELL CONSTRUCTION DETAILS

Facility Name: Truck Fill Stand, NAS Key West

Facility ID#: 449400050

WELL	DATE	INSTALLATION	TOP OF	A/G RISER	TOTAL WELL	SCREENED	WELL	
NO.	INSTALLED	METHOD	CASING ELEVATION	LENGTH, IF APPLICABLE	DEPTH (FEET)	INTERVAL (FBLS)	DIAMETER (IN.)	LITHOLOGY OF SCREENED INTERVAL
A902-P1	26-Jun-98	DPT	3.41	N/A	12.00	2 - 12	0.75	Oolitic Limestone
A902-P2	26-Jun-98	DPT	4.24	N/A	12.00	2 - 12	0.75	Oolitic Limestone
A902-P3	26-Jun-98	DPT	4.07	N/A	12.00	2 - 12	0.75	Oolitic Limestone
A902-MW01	26-Aug-98	HSA	4.41	N/A	11.90	1.90 - 11.90	2	Oolitic Limestone
A902-MW02	26-Aug-98	HSA	2.98	N/A	11.95	1.95 - 11.95	2	Oolitic Limestone
A902-MW03	26-Aug-98	HSA	4.25	N/A	11.50	1.50 - 11.50	2	Oolitic Limestone
A902-MW04	26-Aug-98	HSA	2.63	N/A	11.97	1.97 - 11.97	2	Oolitic Limestone
A902-MW05	26-Aug-98	HSA	4.46	N/A	11.95	1.95 - 11.95	2	Oolitic Limestone
A902-MW06	26-Aug-98	HSA	4.00	N/A	11.94	1.94 - 11.94	2	Oolitic Limestone
A902-MW07	26-Aug-98	HSA	4.22	N/A	11.95	1.95 - 11.95	2	Oolitic Limestone
A902-MWD8	25-Aug-99	HSA	4.11	N/A	35.10	30.10 - 35.10	2	Oolitic Limestone

2.3.2 Monitoring Well Construction

Monitoring wells were installed in conjunction with the HSA soil boring procedures discussed in Section 2.2.2. Prior to installation of the monitoring wells, the soil and groundwater screening data obtained during the DPT investigation was evaluated to determine the optimum number and location of the wells. Monitoring wells were designed to ensure that the screened interval was intersected by the surface of the water table. Monitoring well placements were selected to provide spatial coverage around the former UST for groundwater sampling. Results of the sampling were used to evaluate if the groundwater in the area of the former UST system has been impacted by petroleum products.

The monitoring wells were installed using a Diedrich D-120, truck mounted drill rig using 4.25-inch ID hollow stem augers. Each well was constructed of 2-inch ID, flush-threaded, schedule 40 PVC riser and 0.010-inch slot well screen with a 6-inch silt trap and well bottom cap. The shallow wells were installed to approximately 12 feet bls with a 10 foot screen section. The vertical extent well was installed to a depth of 35 feet with a 5 foot screen section. The annulus around each well was filled to approximately 1 foot above the screen with US Standard Sieve size 20/30 silica sand, followed by a 6-inch to 1 foot 30/65 fine sand seal. The remainder of the annulus was grouted to the surface. Each well is secured with a locking, water-tight cap within a steel, 8-inch diameter steel manhole. The manhole is set within a 24-inch square concrete apron finished slightly above grade. Monitoring well construction details are summarized on Table 2-1. Monitoring well completion logs are provided in Appendix E.

Each monitoring well was developed using a centrifugal pump. Field measurements of pH, temperature, and specific conductance were collected from the water generated during development. All monitoring wells were developed until such field measurements became stable and the purge water clear or for a maximum of one hour. Stabilization of field measurements is based on the USEPA SOP (1997) which specifies the following criteria: temperature +/-05°C, pH +/-0.1 unit, and specific conductance +/-10 umhos/cm. A TtNUS geologist supervised all monitoring well development. All development water was containerized as liquid IDW for later sampling and disposal.

2.4 MEDIA SAMPLING METHODOLOGY

2.4.1 <u>Lithologic Sampling</u>

Representative soil samples were collected during the subsurface investigation in order to assess the shallow subsurface geologic conditions at the Truck Fill Stand. Soil boring logs are provided in Appendix D.

2.4.2 Soil Vapor Screening

During DPT soil boring installation, a soil vapor assessment was conducted. The assessment consisted of both visual inspection for petroleum staining and soil vapor screening with an organic vapor analyzer (OVA) equipped with a flame ionization detector (FID). The soil vapor analysis was performed according to the headspace method prescribed in Rule 62-770.200(8) F.A.C. Using this method, two 16 ounce glass soil jars were half-filled with soil sample (duplicate samples). The soil jars were then sealed with aluminum foil. The soil samples were allowed to equilibrate to ambient temperature which was within the FDEP temperature range.

The samples were screened with a Heath Porta FID II organic vapor analyzer (OVA) equipped with a flame ionization detector (FID). Prior to each days activities, the OVA was field calibrated with 100 ppm methane in air, in accordance with the manufacturers specifications. Sample screening was performed by inserting the OVA probe through the foil sample cover and recording the highest OVA reading. Following collection of this OVA reading, the OVA was fitted with a granular activated carbon filter probe. The OVA was then used to test the headspace above the duplicate sample. Carbon absorbs petroleum hydrocarbons and thus the filtered reading is assumed to represent naturally occurring organic vapors.

Upon completion of the screening exercise, the carbon filtered result was subtracted from the unfiltered result, to obtain a net petroleum vapor value. In accordance with Rule 62-770.200(8), F.A.C., corrected headspace levels in excess of 50 ppm is defined as "excessively contaminated soil" for the Kerosene Analytical Group. Corrected headspace levels in excess of 10 ppm but less than 50 ppm are considered as contaminated, though not excessively contaminated.

2.4.3 Soil Mobile Lab Screening

During the DPT soil vapor assessment, one soil sample was collected from each soil boring for field screening by a mobile laboratory. Each sample was collected from the sample interval within the vadose zone which exhibited the highest OVA-FID reading. These samples were placed in 4-ounce glass jars and immediately given to the onsite mobile laboratory for screening for BTEX, by USEPA Modified Method 8260B and TPH-DRO, by USEPA Modified Method SW-846 8015. The mobile laboratory was provided by KB Labs, Inc. Mobile lab screening results are provided in Appendix F.

2.4.4 Soil and Sediment Analytical Sampling

Soil samples for laboratory analysis were collected from soil borings A902-SB41, A902-SB42, and A902-SB43 as described in Section 2.2.3 above. In accordance with Rule 62-770.600(3)(e), the boring locations and sample intervals were selected to coincide with samples that exhibited high, medium and low field screening results during the soil vapor survey. A902-SB41 was installed immediately adjacent to A902-SB18 (low OVA). A902-SB42 was installed immediately adjacent to A902-SB09 (medium OVA). A902-SB43 was installed immediately adjacent to A902-SB07 (high OVA). The soil samples were placed in the appropriate jars (provided by the laboratory), packed on ice, and shipped via overnight courier to PC&B Environmental Laboratories in Oviedo, Florida. The soil samples were then analyzed for USEPA method 8021 for volatile organic aromatics, USEPA method 8100 for polynuclear aromatic hydrocarbons, USEPA method 415.1 for total organic carbon (TOC), and the Florida PRO method for total recoverable petroleum hydrocarbons (TRPH). This sampling data was collected in order to confirm the presence of petroleum-related compounds indicated during the screening assessment.

A sediment sample was collected from the wetland located northwest of the site. The sample was collected for laboratory analysis to ascertain if the wetland had been impacted by petroleum products. The sample location was approximately 25 feet northwest (downgradient) of monitoring well A902-MW02. The sample was collected using a pre-cleaned stainless steel bowl and trowel. The sediment sample was placed in the appropriate jars (provided by the laboratory), packed on ice, and shipped via overnight courier to PC&B Environmental Laboratories in Oviedo, Florida. The sample was analyzed for USEPA method 8021 for volatile organic aromatics, USEPA method 8100 for polynuclear aromatic hydrocarbons, and the Florida PRO method for total recoverable petroleum hydrocarbons (TRPH). The laboratory analytical reports for the soil and sediment samples are provided in Appendix G.

2.4.5 Groundwater Mobile Lab Screening

During the DPT portion of the field investigation, each soil boring was continued into the saturated zone in order to collect groundwater samples for mobile laboratory screening. The groundwater samples were collected using a detachable drive tip attached to a 24-inch long, retractable, stainless steel well screen encased in the lead probe tube. After this groundwater sampler was advanced into the water bearing zone, the probe tube was withdrawn 24 inches to allow the retractable screen open contact with the formation. A length of PE tubing was then inserted into the probe and connected to a peristaltic pump. Several screen volumes were removed from the probe in order to reduce turbidity levels. After sufficient purging, groundwater samples were collected by pumping directly into 40 milliliter (mL) vials. These samples were immediately taken to the on-site mobile laboratory and screened for BTEX and TPH-DRO constituents using the methods described in Section 2.4.3. All purge water was placed in 55-gallon drums on-site for later sampling and disposal. The mobile laboratory screening results are presented in Appendix F.

2.4.6 Groundwater Analytical Sampling

Groundwater samples were collected from site monitoring wells to determine if the groundwater in the vicinity of the former UST has been impacted by petroleum products. TtNUS personnel collected groundwater samples from all site monitoring wells on August 28 through August 30, 1998. Additional samples were collected from monitoring wells A902-MW01, A902-MW02 and A902-MW07 on December 2, 1998. These samples were collected to evaluate the effectiveness of overdeveloping that was performed in November, 1998 (see Section 1.3.4.2). Groundwater samples collected from each monitoring well were analyzed using USEPA Method 8021 for volatile organic aromatics and volatile organic halocarbons, USEPA Method 504.1 for 1.2dibromoethane (EDB), USEPA Method 8310 for PAHs, USEPA Method 6010 for lead (unfiltered), and Florida PRO for TRPH. The groundwater samples were collected using the low-flow quiescent purging and sampling method using new Teflon tubing and a peristaltic pump. Approximately five well volumes of groundwater were removed from each well using the peristaltic pump and Teflon tubing. Temperature, pH, specific conductance, turbidity measurements, and well purge volumes were recorded at the time of sample collection. Groundwater samples were placed on ice and shipped to PC&B Environmental Laboratories in Oviedo, Florida. The laboratory analytical reports for the groundwater samples are included in Appendix H. Groundwater sample log sheets are provided in Appendix I.

All sampling activities were performed in accordance with the procedures prescribed in the FDEP Quality Assurance Section's Standard Operating Procedures for Laboratory Operations and Sample Collection Activities, (DER-001/92), adopted by TtNUS' CQAP. Sample preservation was accomplished by obtaining pre-preserved containers from a laboratory with an approved CQAP (PC&B). During the groundwater sampling event, quality control samples (e.g. equipment blanks and trip blanks) were prepared and submitted to the laboratory as required by the approved CQAP. Sampling activities were documented in a site-specific field logbook, and samples were transmitted under chain-of-custody protocols to the laboratory.

2.4.7 Free Product Sampling

Prior to groundwater sampling, TtNUS personnel checked each well for free product using an ORS oil/water interface probe. No free product was encountered during this investigation.

2.4.8 IDW Sampling

Upon completion of the monitoring well installation program, TtNUS personnel collected a composite soil sample from the IDW drums generated during DPT and monitoring well installation activities. The sample was collected for laboratory analysis for pre-disposal characterization. The soil sample was placed in the appropriate jars (provided by the laboratory), packed on ice, and shipped via overnight courier to PC&B Environmental Laboratories in Oviedo, Florida. The soil sample was then analyzed for USEPA method 8021 for volatile organic aromatics, USEPA method 8100 for polynuclear aromatic hydrocarbons, USEPA method 5050/9252 for total halogens, and the Florida PRO method for TRPH. Laboratory analytical reports for the IDW samples are included in Appendix J.

2.5 HYDROLOGIC INVESTIGATION

2.5.1 Water Level Measurements

The depths to groundwater in all site monitoring wells were collected on October 2, 1998. Measurements were collected from the north rim of the top of well casings using an electronic water level indicator. The water level measurements were collected to determine the depth to water in the surficial aquifer.

The elevation of the north rim for each top of well casing was surveyed by Frederick H. Hildebrandt, a Florida registered surveyor, to the nearest 0.01 foot relative. Elevations are based on the N.G.V.D. 1929 Datum and benchmark number K-271 (elevation 3.317 feet msl).

Groundwater elevations were determined by subtracting the measured depth to groundwater for each well from it's respective top of casing elevation.

2.5.2 Aquifer Characteristics

On August 30, 1998, TtNUS personnel performed specific capacity tests on monitoring wells A902-MW03, A902-MW05 and A902-MW06. The objective of the specific capacity tests was to determine the productivity or the yield per unit of drawdown of the aquifer in which the wells are screened. In addition, the specific capacity tests were conducted to provide a quantitative estimate of the hydraulic conductivity of the shallow aquifer.

Specific capacity is defined as yield divided by drawdown, and is normally expressed as gallons per minute/feet of drawdown. Both the pumping rate and drawdown were measured simultaneously in the tested wells after the water level stabilized and a given amount of time elapsed. Dividing the yield rate by the stabilized drawdown, when both are measured simultaneously, gives the specific capacity. Specific capacity can vary with pumping duration, with specific capacity decreasing as pumping time increases. Additionally, specific capacity generally decreases as discharge rate increases. Both of these responses are due to the dewatering of the aquifer within the domain of the cone of depression; for a given amount of drawdown, the yield progressively becomes less as the saturated thickness of the aquifer is reduced. Specific capacity may also vary with yield as function of the system efficiency, including the pump, well, discharge piping, well efficiency, etc., which all add an element of friction to the process.

A submersible pump was used to conduct the specific capacity tests. Measurement of the flow rate was determined using a graduated bucket and stopwatch. The drawdown in the well was measured with an electrical water level indicator. The water-level was also measured using a data logger and pressure transducer. Upon completion of the specific capacity test, the pump was shut off and the rise in water level or the residual drawdown was measured.

Aquifer parameters of hydraulic conductivity and transmissivity were calculated from the specific capacity test data using a computer program developed by Kasenow and Pare (1995) based on

equations presented in Theis (1935), Lohman (1972) and Turcan (1962). Drawdown data from the well, as recorded by the data logger, was entered into the computer program along with required variables that characterize the aquifer (storage and well-loss coefficients), the pumping rate, and well dimensions. Based upon this information the program estimated specific capacity, transmissivity, and hydraulic conductivity. Data output sheets from the Kasenow program are provided in Appendix K.

2.5.3 Groundwater Flow Velocity

The horizontal groundwater gradient across the site was evaluated from water level measurements collected on October 2, 1998. The groundwater gradient was calculated by determining the perpendicular distance between groundwater contours developed from groundwater elevation data. Groundwater gradient calculations are included in Appendix L.

The groundwater flow gradient was determined using the following equation:

$$i = \frac{h_1 - h_2}{d}$$

where:

i = the hydraulic gradient

 h_1 = the water elevation at point 1

 h_2 = the water elevation at point 2

d = the distance between point 1 and point 2

Potential movement of groundwater at the site may be described in terms of transportation by natural flow in the saturated zone while assuming groundwater flow follows Darcy's Law. Darcy's Law may be expressed as:

$$V = \left(\frac{K}{n}\right) \times i$$

where:

V = average seepage velocity

K = hydraulic conductivity

n = effective porosity (assumed)

i = average hydraulic gradient

The groundwater seepage velocity calculations are included in Appendix L.

2.5.4 <u>Tidal Influence Survey</u>

A tidal survey was conducted during the SA to determine if the potentiometric surface at the site is influenced by tidal fluctuations. Continuous water level measurements were obtained from monitoring well A902-MW06 for a period of 24 hours. The measurements were obtained using a Hermit data logger. The output file from the data logger is provided in Appendix M.

3.0 RESULTS OF INVESTIGATION

3.1 SITE-SPECIFIC HYDROGEOLOGY

3.1.1 Lithology

The site is underlain by sediments composed predominately of light brown to beige to white, sandy, oolitic limestone with some shell fragments. The material ranges from moderately consolidated to hard and is moderately to highly weathered with intergranular and moldic porosity. This lithology extends to at least 35 feet bls, which was the maximum depth drilled during the investigation. Due to the homogeneity of the subsurface, no lithologic cross-section was constructed. Soil boring logs are included as Appendix D.

3.1.2 Aquifer Characteristics and Classification

Based on water level data collected from site monitoring wells on October 2, 1998, the depth to the shallow aquifer across the study area is approximately 1 to 3 feet bls. The groundwater level measurements are presented in Table 3-1. As discussed in Section 1.2.4, the surficial aquifer at Boca Chica Key is classified as a non-potable, G-III aquifer.

Specific capacity tests conducted at monitoring wells A902-MW03, A902-MW05 and A902-MW06 were used to estimate the hydraulic conductivity of the surficial aquifer at the Truck Fill Stand. The geometric mean hydraulic conductivity for the surficial aquifer was estimated 4.34 ft/day as shown by the hydraulic conductivity calculations provided in Appendix K.

Using the groundwater flow gradient equation presented in Section 2.5.3, a hydraulic gradient of 0.001 feet/foot to the south-southeast was calculated from the data collected on October 2, 1998. The groundwater flow direction is depicted in Figure 3-1.

Lithologic data and available literature indicate the effective porosity of the lithology comprising the surficial aquifer is approximately 0.30 (Heath, 1994).

Using a hydraulic conductivity of 4.34 feet/day, the hydraulic gradient of 0.001 feet/foot, an inferred effective porosity value of 0.30, and Darcy's Equation as stated in Section 2.5.3, the groundwater seepage velocity across the site was calculated at 0.02 feet/day in a northwest

TABLE 3-1: GROUNDWATER ELEVATION SUMMARY

Facility Name: Truck Fill Stand, NAS Key West

Facility ID#: 449400050

All Measurements = Feet (except as noted)

No Data = Blank
ND = Not Detected

WELL NO.	A902-MW01	A902-MW02	A902-MW03	A902-MW04	A902-MW05	A902-MW06
DIAMETER	2"	2"	2"	2"	2"	2"
WELL DEPTH	11.90	11.95	11.50	11.97	11.95	11.94
SCREEN INTERVAL	10	10	10	10	10	10
TOC ELEVATION	4.41	2.98	4.25	2.63	4.46	4.00

DATE	ELEV	DTW	FP															
02-Oct-98	1.95	2.46	ND	0.90	2.08	ND	2.02	2.23	ND	1.98	0.65	ND	2.06	2.40	ND	2.09	1.91	ND
02-Dec-98	1.00	3.41	ND	0.96	2.02	ND	1.11	3.14	ND	1.08	1.55	ND	1.11	3.35	ND	0.97	3.03	ND
												-						

WELL NO.	A902-MW07	A902-MWD8			
DIAMETER	2"	2"			
WELL DEPTH	11.95	35.10			
SCREEN INTERVAL	10	5			
TOC ELEVATION	4.22	4.11			

DATE	ELEV	DTW	FP	ELEV	DTW	FP	ELEV	DTW	FP	ELEV	DTW	FP	ELEV	DTW	FP	ELEV	DTW	FP
02-Oct-98	2.15	2.07	ND	1.13	2.98	ND	0.00			0.00			0.00			0.00		
02-Dec-98	1.17	3.05	ND	0.77	3.34	ND	0.00			0.00			0.00			0.00		
					,													

3-3

CTO 0031

direction. The transmissivity of the surficial aquifer was calculated from specific capacity test data using a computer program by Kasenow and Pare (1995). Based on output obtained from this program, the transmissivity at the site ranges from 140.6 ft²/day (1049 gpd/ft) in A902-MW03 to 200.9 ft²/day (1499 gpd/ft) in A902-MW05. These values are consistent with published values for transmissivity for the surficial aquifer in this area.

3.1.3 Tidal Influence

The data collected during the tidal survey conducted on monitoring well A902-MW06 reveal a 0.15 foot fluctuation in water level over a 24 hour period. This data suggests that there is a minimal tidal influence on the surficial aquifer at the site. The data from the tidal survey is provided in Appendix M.

3.2 SOIL AND SEDIMENT QUALITY

The vertical and horizontal extent of petroleum impacted soil in the vadose zone was assessed through soil vapor analysis performed during the direct-push investigation and monitoring well installation as described in Section 2.2.1 and 2.2.2 of this report. Soils exhibiting an OVA response of greater than 50 ppm were encountered in numerous borings across the site. These data indicate that "excessively contaminated" soil (greater than 50 ppm OVA response as defined by Chapter 62-770.200, F.A.C.) is present at the site. The "excessively contaminated soil" extends from near the surface to the water table at a depth of approximately 3 feet in the vicinity of the former UST location to the west of the dispenser island, as well as a smaller area to the east of the dispenser island. The mobile laboratory results indicate a distribution of contaminants that is similar to the OVA results. Soil vapor screening results are presented in Table 3-2. Soil boring locations and vapor readings are depicted on Figure 3-2.

The results of the laboratory analysis of soil samples confirm that petroleum related compounds are present in the vadose zone soil at the site. The highest concentration of petroleum constituents was detected in the soil sample collected from A902-SB42. TPH and PAH concentrations in this sample exceed the soil cleanup target levels (SCTLs) established by Chapter 62-770, F.A.C. Laboratory analytical results for soil samples are summarized on Table 3-3.

Laboratory analytical results from the sediment sample collected from the wetland indicate that low levels of petroleum related compounds are present in the sediment. The TRPH level was

TABLE 3-2: SOIL SCREENING SUMMARY

Facility Name: Truck Fill Stand, NAS Key West

Facility ID#: 449400050

	SAMPLE			OVA SC	REENING R	ESULTS	
BORING	DATE	DEPTH	SAMPLE	TOTAL	CARBON	NET	
NO.	COLLECTED	ТО	INTERVAL	READING	FILTERED	READING	COMMENTS
110.	002220123	WATER	(FBLS)	(ppm)	(ppm)	(ppm)	
A902-SB01	23-Jun-98		0-2	120	0	120	
		3	2 - 4	50	2	48	
A902-SB02	23-Jun-98		0 - 2	1200	80	1120	
		3	2 - 4	380	70	310	
A902-SB03	23-Jun-98		0 - 2	280	0	280	
		3	2 - 4	1700	20	1680	
A902-SB04	23-Jun-98		0-2	1000	50	950	
		2	2-4	75	50	25	
A902-SB05	23-Jun-98		0 - 2	275	60	215	
		2	2 - 4	80	20	60	
A902-SB06	23-Jun-98		0-2	200	90	110	
		2	2-4	175	90	85	
A902-SB07	23-Jun-98		0-2	1600	0	1600	
		3	2 - 4	1400	0	1400	
A902-SB08	23-Jun-98		0 - 2	100	0	100	
		3	2 - 4	1500	0	1500	
A902-SB09	23-Jun-98		0-2	280	15	265	
		3	2 - 4	1000	25	975	
A902-SB10	24-Jun-98		0 - 2	1600	20	1580	
		3	2 - 4	400	0	400	
A902-SB11	24-Jun-98		0 - 2	125	0	125	
		3	2 - 4	3500	30	3470	
A902-SB12	24-Jun-98		0 - 2	3400	30	3370	
		3	2 - 4	NS	NS	NS	
A902-SB13	24-Jun-98		0 - 2	1000	0	1000	
		3	2 - 4	25	15	10	
A902-SB14	24-Jun-98		0 - 2	41	35	6	
		2	2 - 4	NS	NS	NS	
A902-SB15	24-Jun-98		0 - 2	14	11	3	
		3	2 - 4	20	18	2	
A902-SB16	24-Jun-98		0 - 2	0	0	0	
		3	2 - 4	5	4	1	
A902-SB17	24-Jun-98		0-2	20	5	15	
		3	2 - 4	60	25	35	
A902-SB18	24-Jun-98		0 - 2	125	0	125	
		3	2 - 4	3400 .	25	3375	
A902-SB19	24-Jun-98		0-2	0	0	0	
		3	2 - 4	3400	10	3390	
A902-SB20	24-Jun-98		0-2	0	0	0	
		3	2-4	22	5	17	
A902-SB21	24-Jun-98		0 - 2	0	0	0	
		3	2 - 4	1000	0	1000	
A902-SB22	24-Jun-98		0-2	0	0	0	
		3	2 - 4	1200	8	1192	
A902-SB23	25-Jun-98		0 - 2	0	0	0	
·		2	2 - 4	15	12	3	

TABLE 3-2: SOIL SCREENING SUMMARY

lity Name: Truck Fill Stand, NAS Key West

Facility ID#: 449400050

	SAMPLE			OVA SC	REENING R	ESULTS	
BORING NO.	DATE COLLECTED	DEPTH TO WATER	SAMPLE INTERVAL (FBLS)	TOTAL READING (ppm)	CARBON FILTERED (ppm)	NET READING (ppm)	COMMENTS
A902-SB24	25-Jun-98	3	0 - 2 2 - 4	20 250	8 20	12 230	
A902-SB25	25-Jun-98	3	0 - 2 2 - 4	8 55	3 12	5 43	
A902-SB26	25-Jun-98	3	0 - 2 2 - 4	15 26	3 5	12 21	
A902-SB27	25-Jun-98	3	0 - 2 2 - 4	12 3100	0 60	12 3040	
A902-SB28	25-Jun-98	3	0 - 2 2 - 4	3000 3000	28 90	2972 2910	
A902-SB29	25-Jun-98	3	0 - 2 2 - 4	0 5	0	0 5	
A902-SB30	25-Jun-98	3	0 - 2 2 - 4	3100 3100	40 45	3060 3055	
A902-SB31	25-Jun-98	3	0 - 2 2 - 4	30 3000	0 45	30 2955	
A902-SB32	25-Jun-98	3	0 - 2 2 - 4	5 35	0	5 25	
A902-SB33	25-Jun-98	3	0-2	0 2900	0 20	0 2880	
)2-SB34	25-Jun-98	3	0 - 2 2 - 4	0	0	0	
A902-SB35	25-Jun-98	3	0 - 2	0	0	0	
A902-SB36	25-Jun-98	3	0 - 2	10 5	7 3	3 2	
A902-SB37	26-Jun-98	3	0 - 2	6	5	1 2	
A902-SB38	26-Jun-98	3	0-2	0	0 12	0 3	
A902-SB39	26-Jun-98	3	0-2	20	12 200	.8	
A902-SB40	26-Jun-98	3	0-2	0	0	0	

NS = No sample collected due to refusal.

TTNUS/TLH/99-028/7586/5.4

3-7

CTO 0031

TABLE 3-3: SOIL AND SEDIMENT ANALYTICAL SUMMARY

Facility Name: Truck Fill Stand, NAS Key West

Facility ID#: 449400050

	Sample OVA Laboratory Analyses														
Boring No.	Date Collected	Depth to	Sample Interval	Net OVA Reading		Ethyl- benzene	Toluene	Total Xylenes	Total VOAs	MTBE	Naph- thalene	TRPHs	Benzo (a pyrene	Dibenzo (a,h) anthracene	
Į.		Water (ft)	(fbls)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	Comments
SCTL*					1.1	240	300	290	None	350	1,000	350	0.1	0.1	
A902-SB41	25-Aug-98	3	2	125	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<4.0	<0.100	<0.100	Adjacent to SB18 (low OVA)
A902-SB42	25-Aug-98	3	2	265	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	490	0.460	<0.100	Adjacent to SB09 (medium OVA)
A902-SB43	25-Aug-98	3	2	1600	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<4.0	<0.100	<0.100	Adjacent to SB07 (high OVA)
A902-SD01	28-Jan-99	N/A	N/A	N/A	<0.034	<0.034	<0.034	<0.034	<0.034	<0.034	<0.670	160	<0.670	<0.670	Approx. 25 feet NW of A902-MW02

^{*} Soil cleanup target levels for direct exposure as specified in Table IV of Chapter 62-770, FAC. Bold values exceed target levels.

reported above method detection limits, however, the TRPH concentration was below the SCTL. Benzo(a) pyrene and dibenzo(a,h) anthracene were reported at levels below method detection limits, however, the method detection limits were elevated based on the moisture content of the sample. The elevated detection limits were slightly above the SCTL, therefore, it must be assumed that the concentration may be slightly above the SCTL.

3.3 WATER QUALITY

As stated previously, a wetland is located immediately to the northwest of the site. In accordance with Rule 62-770.680, if the sites groundwater contamination is affecting, or may potentially affect a surface water body, then the surface water cleanup criteria shall also apply to groundwater. In addition, the surficial aquifer at the site is classified as a G-III aquifer due to the high total dissolved solids content. Therefore, the GCTLs used for this site are the lower of Tables VII (surface water criteria) and VIII (groundwater of low yield/poor quality) of Chapter 62-770, F.A.C.

Based on the above criteria, laboratory analytical results from groundwater samples collected on August 28 through August 30, 1998 indicate that benzene concentrations in monitoring well A902-MW07 exceeded Chapter 62-770 target levels. The data also indicate that TRPH and PAH concentrations in monitoring wells A902-MW01 and A902-MW02 exceeded target levels. In addition, lead concentrations in monitoring wells A902-MW01, A902-MW02, A902-MW05, and A902-MW07 exceeded target levels.

Laboratory analytical results from groundwater samples collected on December 2, 1998 (subsequent to overdeveloping) indicate that benzene concentrations in monitoring well A902-MW07 had decreased to below method detection limits. In addition, the lead concentration in monitoring wells A902-MW01 and A902-MW02 decreased to below target levels. However, TRPH and PAH concentrations in monitoring wells A902-MW01 and A902-MW02 still exceeded Chapter 62-770 target levels. In addition, the lead concentration in A902-MW07 increased slightly so it now exceeds regulatory target levels by a slight amount.

Dissolved VOA concentrations, dissolved PAH concentrations and dissolved TRPH concentrations are provided on Figure 3-3, Figure 3-4 and Figure 3-5 respectively. A summary of groundwater analytical results are presented in Table 3-4. Groundwater laboratory analytical reports are provided in Appendix H.

TTNUS/TLH/99-028/7586/5.4

3-10

CTO 0031

TABLE 3-4: GROUNDWATER MONITORING WELL ANALYTICAL SUMMARY

Facility ID#: 449400050

Facility Name: Truck Fill Stand, Building A902, NAS Key West

Sample				Ethyl-	Total	Total			Total		Naph-	Acenaph-	Acenaph-
Location	Date	Benzene	Toluene	benzene	Xylenes	BTEX	MTBE	EDB	Lead	TRPHs	thalene	thene	thylene
Cleanup Target													
Level(1)		10	40	300	200		35	0.02	150	50	200	200	2100
Marine Surface Water													
Criteria (2)		71	475	605	370		33600	13	6	5	26	3	0.031
A902-GW-MW01	8/30/98	<1.0	<1.0	<1.0	<1.0	<1.0	<5.0	<0.02	26	14,8	130	28	20
	12/2/98	4.3	<1.0	<1.0	<1.0	4.3	<1.0	<0.02	4	10.8	52.0	21	<5
A902-GW-DUP(3)	8/30/98	<1.0	<1.0	<1.0	<1.0	<1.0	<5.0	<0.02	25	10.0	160	28	18
A902-GW-MW02	8/29/98	3.5	<1.0	<1.0	<1.0	3.5	<5.0	<0.02	<3	5.9	11.1	14.0	13.0
	12/2/99	2.7	<1.0	<1.0	<1.0	2.7	<1.0	<0.02	3	5,8	81.0	7	<5
A902-GW-MW03	8/29/98	<1.0	<1.0	<1.0	<1.0	<1.0	<5.0	<0.02	5 .	1.0	<5.0	200 3 28 21 28 14.0	<5.0
	12/2/98	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS		NS
A902-GW-MW04	8/29/98	1.7	<1.0	<1.0	<1.0	1.7	<5.0	<0.02	<3	2.8	17.1	<5.0	<5.0
-	12/2/98	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
A902-GW-MW05	8/29/98	<1.0	<1.0	<1.0	1.5	1.5	<5.0	<0.02	11	1.1	<5.0	<5.0	<5.0
	12/2/98	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
A902-GW-MW06	8/29/98	<1.0	<1.0	<1.0	<1.0	<1.0	<5.0	<0.02	8	1.8	<5.0	<5.0	6.0
	12/2/98	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
A902-GW-MW07	8/28/98	25.6	<1.0	38.4	2.5	66.5	<5.0	<0.02	4	<0.1	<5.0	<5.0	<5.0
	12/2/99	<1.0	<1.0	26.3	<1.0	26.3	<1.0	<0.02	9	0.3	6.00	<5	<5
A902-GW-MW08	8/30/98	<1.0	<1.0	<1.0	<1.0	<1.0	<5.0	<0.02	4	0.5	8.8	<5.0	<5.0
	12/2/98	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
A902-GW-EQ(4)	8/30/98	<1.0	<1.0	<1.0	<1.0	<1.0	<5.0	<0.02	<3	<0.1	<5.0	<5	<5
A902-TB(5)	8/30/98	<1.0	<1.0	<1.0	<1.0	<1.0	<5.0	<0.02	NA	NA	NA	NA	NA .

NOTES:

- (1) Groundwater cleanup target levels as specified in Table VIII of Chapter 62-770, Florida Administrative Code.
- (2)Marine surface water criteria as specified in table VII of Chapter 62-770, Florida Administrative Code.
- (3) This groundwater sample is a duplicate sample collected from A902-GW-MW01.
- (4)This sample is an equipment rinsate blank.
- (5) This sample is a trip blank analyzed for volatile organic aromatics only.

Concentrations reported in micrograms per liter for all chemicals except TRPH. TRPH is reported in milligrams per liter.

NA = not analyzed.

TRPH = total recoverable petroleum hydrocarbons.

Bold values exceed target levels.

4.0 DISCUSSION

"Excessively contaminated" soil, as defined by Chapter 62-770.200 F.A.C., was detected within the vadose zone during this investigation. The "excessively contaminated soil" was identified from near the surface to the water table at an average depth of approximately 3 feet bls in the vicinity of the former UST location to the west of the dispenser island, as well as a smaller area to the east of the dispenser island. The "excessively contaminated" soil detected to the east of the dispenser island corresponds to the location where a release reportedly occurred when a tanker truck collided with the canopy support (see Section 1.3.1). The presence of petroleum related compounds in the vadose zone was confirmed by laboratory analysis. No free product was encountered during the this investigation.

Laboratory analytical results indicate that benzene concentrations are below regulatory target levels in all of the sites monitoring wells. TRPH and PAH concentrations exceed regulatory target levels in monitoring wells A902-MW01 (source well) and A902-MW02 (downgradient well). In addition, lead concentrations exceed regulatory target levels in monitoring wells A902-MW01, A902-MW02, A902-MW05 and A902-MW07. A comparison of the August 1998 analytical results with the December 1998 results suggest that overdeveloping was successful at reducing the benzene concentration in monitoring well A902-MW07, however, it was less effective at reducing the TRPH and PAH concentrations in monitoring wells A902-MW01 and A902-MW02. With the exception of low lead levels in the upgradient well, A902-MW07, the horizontal extent of the dissolved hydrocarbon plume appears to be delineated in all directions except downgradient. The vertical extent of the dissolved hydrocarbon plume has been delineated. The petroleum hydrocarbon concentrations detected in downgradient monitoring well A902-MW02, along with the low levels of petroleum compounds detected in the sediment sample collected from the wetland, suggest that the plume is migrating into the wetland. Additional assessment will be required to confirm this.

Depth to water in the surficial aquifer was determined to be approximately 3 feet bls. A subsurface utility cable was identified on the east side of the dispenser island. The distribution of the elevated headspace readings to the east of the dispenser island suggests that this cable may be acting as a preferential pathway for migration of contaminants. The predominant direction of groundwater flow for the surficial aquifer is to the northwest, toward the wetland. Results from the tidal survey suggest that there is a minimal tidal influence on the surficial aquifer in the vicinity of the site. The groundwater flow velocity was calculated at 0.02 feet/day. The total dissolved solids

content in the surficial aquifer in the area of NAS qualifies the aquifer as a G-III aquifer (Chapter 62-3.403 F.A.C.).

No well fields and surface water intakes which supply drinking water to the local area are located within a 0.50-mile radius of the site. No domestic water wells were identified within 0.25-mile of the site.

5.0 CONCLUSIONS AND RECOMMENDATION

The results of the site assessment performed by TtNUS at the Truck Fill Stand are summarized as follows:

- The tank closure report noted that the tank appeared in excellent condition with no signs of leaks. The areal extent of petroleum contamination along with the condition of the tank suggests that the contamination may be from a different source or from spillage.
- The site is underlain by a surficial aquifer comprised of oolitic limestone. No confining layers were encountered within the upper 35 feet of the surficial aquifer.
- The surficial aquifer qualifies as a G-III aquifer.
- The direction of groundwater flow is to the northwest, however, a tidal survey suggests that
 there is a minimal tidal influence on the surficial aquifer. The surficial aquifer flows at a
 calculated velocity of 0.02 feet/day.
- The horizontal extent of the dissolved hydrocarbon plume has been delineated in all directions except downgradient, (with the exception of low lead levels in the upgradient well, A902-MW07). The vertical extent of the dissolved hydrocarbon plume had been adequately defined.
- Free product was not found at the site during the course of this assessment.
- No private potable wells were found within a 0.25-mile radius of the site. No municipal wells
 were found within a 0.5-mile radius of the site.
- TRPH, PAHs, and lead are the detected petroleum constituents that exceed Chapter 62-770,
 F.A.C., target limits in groundwater.

Based upon the hydrogeological and chemical data presented in this SAR and supported by the criteria sited in Chapter 62-770, F.A.C., the site does not qualify for No Further Action or Natural Attenuation Monitoring. Therefore, Tetra Tech NUS, Inc. proposes that a source removal action be initiated to remediate the excessively contaminated soil at the site. Subsequent to source removal, a supplemental assessment should be conducted to evaluate the impact of the source removal on the dissolved hydrocarbon concentrations.

6.0 REFERENCES

- ABB-ES (ABB Environmental Services, Inc.), 1995. Facility and Remedial Investigation NAS Key West, Workplan, Volume 1 and Sampling and Analysis Plan, Volume 2, prepared for SOUTHDIVNAVFACENGCOM, Tampa, Florida, December 1995
- BRE (Brown & Root Environmental), 1997. Draft Supplemental RCRA Facility Investigation and Remedial Investigation Report for NAS Key West High-Priority Sites, prepared for the Department of Navy, Southern Division, Naval Facilities Engineering Command, Aiken, South Carolina, Revision 2, March 1997.
- IT Corporation, 1993. RCRA Facility Investigation/Remedial Investigation, Final Workplan and Sampling and Analysis Plan, NAS Key West, Boca Raton, Florida, prepared for SOUTHNAVFACENGCOM, Tampa, Florida, March.
- Kasenow, M. and Pare, 1995. Using Specific Capacity to Estimate Transmissivity: Field and Computer Methods. Water Resources.
- Theis, C.V., 1935. The relation between the lowering of piezometric surface and the rate and duration of discharge of a well using ground-water storage. Transactions of the American Geophysical Union, v.16.
- Turcan, A.N., Jr., 1962. Estimating the specific capacity of a well. US Geological Survey Professional Paper 450-E.
- Omega Environmental Services, 1995. UST Closure Report, Tank A902B, Naval Air Station, Key West, Florida.
- U.S. Geological Survey. Boca Chica, FLA., Quadrangle 1971, 7.5 minute series, Topographic Quadrangle Maps of Florida: scale 1:24,000.

APPENDIX A

CAR SUMMARY SHEET

CONTAMINATION ASSESSMENT REPORT SUMMARY SHEET

Facility Name:	Truck Fill Stand, NAS	Key West		Reimbursement Site	: 🛘
Location:	Key West, Florida			State Contract Site:	
EDI #:		FAC I.D.#	449400050	Other: Non-Prog.	_ 0
Date Reviewed:		Local G	overnment:		
(1) Source of Spill:	Fuel filter decanter ta	nk		Date of Spill:Unl	known
(2) Type of Product:	Gasoline Group	Gallons L	ost	Kerosene Group	Gallons Lost
	☐ Leaded			☐ Kerosene	
	☐ Unleaded Regular		·	☐ Diesel	
	☐ Unleaded Premium			✓ JP-4 Jet Fuel	Unknown
	☐ Gasohol			☐ Jet A Fuel	
	☐ Undetermined			☐ Unknown	
(3) Description of I	RA: Soil from tank ex	xcavation	☐ Free produ	ıct Removal:	(gals)
adjacent to building	g but discontinued due to	0	☑ s	Soil Removal: 24	(cubic yds)
	al integrity of building.		☐ Soi Incineration:		(cubic yds)
(4) Free Product st	ill present (yes/no) No	Maximum	apparent produc	ct thickness: N/A	(feet)
(5) Maximum Grou contamination		I VOA:26.3 lead:11		nzene: 4.3 EDE MTBE: <5.0 oth	
(6) Brief lithologic (description: Oolitic lim			gic variations across site.	
	t soil concentration (OV)			A method 5030/8020:	
	contaminated? (yes/no)	No	Depth of verti	cal Less th	nan 35 feet.
(9) Date of last cor	mplete round of groundw	ater sampling	_	Date of last soil sampl	ing: 6/26/98
(10) QAPP approve	ed? (yes/no) Date: _	8/24/98		-	
(11) Direction (e.g.	. NNW) of surficial groun	dwater flow:	NW	(Figure 3-1 on p	age <u>3-3)</u>
(12) Average depth	n to groundwater:	3	_ (ft)		
(13) Observed rang	ge of seasonal groundwa	ter fluctuation	ns: @ 1	(ft) (Based on water lev- collected during the CAI investigation)	
(14) Fetimated rate	e of groundwater flow:	0.02	(ft/day)		
	dient across site: 0.00		(it/day)		
(16) Aquifer charac Hydraulic cor Storage coefi Aquifer thick Effective soil Transmissivit	cteristics: Values Inductivity 4.34 Ificient - Inness 40 Inness 40 Inness 30	U ft/d ft/d ft ft	Inits day ft //day/ft	Method Kasenow & Pare, 199 - Literature Literature Specific Capacity Tes	
(17) Other remarks	: None				

APPENDIX B

TANK CLOSURE REPORT

COPY

OMEGA ENVIRONMENTAL SERVICES, INC.

UST CLOSURE REPORT
TANK A902B
NAVAL AIR STATION, KEY WEST, FLORIDA
CONTRACT NUMBER N62467-93-C-0645

Dupe-feture & J.

OB

OMEGA ENVIRONMENTAL SERVICES, INC.

Prepared By
Omega Environmental Services, Inc.
4661 Hammermill Rd., Ste. B
Tucker, Georgia 30084

DAUL CALLIGAND

OF SKOLUN RODT

1311 FXCCUTIVE CONTER DI.

Ellis Bldg. SVITC 220

TALAHASSIFE, FL32301-504

4661 Hammermill Rd. Suite B Tucker, GA 30084 Fax: (404) 934-2451 Tel: (404) 621-9414

October 25, 1995

Subject:

Underground Storage Tank Closure

Naval Air Station, Key West, Florida

Tank A902B

Contract No. N62467-93-C-0645

Omega Environmental Services is pleased to submit this closure report and Closure Assessment form 17-176.900(6) to Mark Ewing, Key West, NAS Project Manager. We recommend that this report be submitted to the following offices.

Florida Department of Environmental Regulations South District Office 2269 Bay Street Ft. Myers, Florida 33901-2896

Bob Turner Monroe County Public Health Services P. O. Box 6193 Key West, Florida 33041-6193

It is my professional opinion that this report meets the Florida Department of Environmental Regulations reporting requirements for Underground Storage Systems, and also meets the specifications required by the Department of the Navy described in contract N62467-93-C-0645, Section 02082, p.3.23 (Closure Reports).

Omega Environmental Services greatly appreciates the opportunity to assist Naval Air Station, Key West, Florida in the Closure of the underground storage tanks associated with this project. If you have any questions do not hesitate to call for further assistance.

Sincerely,

C. H. Moss, PE

Professional Engineer

Table of Contents

Item No.	Description	Page No.
1.0	Site Information	1
2.0	UST Removal	1
3.0	OVA Soil Screening	1
4.0	Conclusions	.2

Appendices

Appendix 1	Site Plan and Sample Location
Appendix 2	Soil Screening Data
Appendix 3	FDER Closure Assessment Form
Appendix 4	Ground water Analysis
Appendix 5	Certificates of Disposal
Appendix 6	Public Work Permits
Appendix 7	Progress Photographs

1.0 Site Information

On September 28, 1995 Omega Environmental Services removed one underground storage tank, [A902B] located at the Boca Chica Naval Air Station, Fuel Farm Fill Station, in Key West, Florida. The tank was constructed of plate steel and had a capacity of one thousand gallons. The tank was used for water canting storage from the JP 5 fuel filter system located at the fuel farm. The tank was reported to be installed in 1990.

Omega Environmental Services was contracted by the U. S. Navy to remove the tanks and associated piping in the excavation and compile all associated reporting and site closure information. The ground water was assessed to be less than twenty feet from the surface which required sampling to comply with FDER regulations. The installation of a ground water monitoring well was performed after the removal process and the samples were sent to Envirolab, Ormond Beach, Florida for analysis.

Due to the tank being located in a photograph restricted area no photos of the site or tank removal will be available for this report.

2.0 UST Removal

On September 26, 1995 OES contracted EMC Corporation to remove the liquid from tank A902B. On September 28, 1995 OES prepared the location for removal of the tank. The soil was removed to expose the top of tank which was three feet below the ground surface. The supply piping was rinsed and disconnected from the tank, and removed. The vent piping was completely removed from the tank and building. The soil was excavated, with a backhoe, down each side of the tank and across the ends of the tank. The tank was checked for the presence of a hazardous atmosphere and found to be safe for removal. The tank was removed from the excavation and loaded onto a truck for transport to a lay down area for processing for recycling. Omega Environmental Services then backfilled the excavation with fill dirt compacting the soil back to the original grade in one foot lifts.

3.0 Soil Screening

The Soil was tested for total hydrocarbons using a Foxboro 108 FID Monitor by John Fleming of OES. Sampling was conducted throughout the removal process on the soil. The monitor was allowed to warm up for twenty minutes before calibration. 98 ppm Methane gas was used to calibrate the instrument before testing. The background reading was recorded in the area before sampling was initiated. Samples were taken using latex gloves and placed in pint jars with an aluminum foil cover. The samples were then placed in an ice chest to allow the temperature to equalize. The location of the side wall samples were chosen to be the closest to the tank with a depth that would most likely be contaminated by leaking fuel. Sampling was conducted at the top of the groundwater level to detect any fuel floating on the water. Samples were taken along the piping and at the fill ports and other locations as specified by the FDER. The samples were numbered and locations recorded along with other information. The samples were then screened

using the Foxsboro 108 and the sample data recorded. The sample results are listed in Appendix 2 of this document. All data was recorded in a bound field log at the time of sampling and the field log is available upon request for review by Regulatory Agencies. The sample locations are indicated on the site plan, Appendix 1. Head-space sampling was performed in accordance with FDER Quality Assurance Standard Operating Procedures for Petroleum Storage System Closure Assessments, Section III and IV respectively.

Water samples were taken after the monitoring well was installed. Two inch PVC piping was used for the monitoring well and it was installed by Omega Environmental Services. After installation of the well 15 gallons of water was pumped from the well, five times the volume, and the sample bottles were filled for analysis. The well was removed after all samples were taken. The samples were shipped, with ice as a preservative, by Federal Express with a Chain of Custody to Envirolab, Ormond Beach, Florida. Sample results are listed in Appendix 4.

4.0 Conclusions

Based on discussions with Bob Turner [Monroe County Health Department] we are of the opinion that the tanks were closed in accordance with FAC Chapter 62-761 Underground Storage Tank Systems. The ground water analysis showed high levels of Polynuclear Aromatic Hydrocarbons and Aromatic Volatiles such as Benzene, Ethylbezene, and Xylene. OVA readings of the soil revealed contamination and the site appeared contaminated before OES started excavation. Free fuel was present on the ground water in the excavation during the removal of the tank. The tank appeared in excellent condition with no sign of leaks. It is Omega Environmental Services opinion that the contamination found in the ground water may have come from a different source or from spillage. Due to the amount of soil contaminated in the area and the Navy's consideration of plans to remediate the area OES was directed to replace the soil as backfill. Based upon the limited information compiled during the tank removal process OES must report the contamination source as unknown. OES recommends that further investigation of the contamination be conducted by the Navy to determine the source and location of the contamination and options to remediate the area.

APPENDIX 1

APPENDIX 2

OVA Field Data Sheet

OVA Fie				Contract Number	Comments					
Key West NAS				N62467-93-C-0645						
Site Name or	Number		Date		JP 5 Canting	tank				
A902B			28-Sep-95							
Calibration In	formation	Date	28-Sep-95	Time	2:00pm		. •			
Instrument				Calibration Gas		1				
Foxsboro 10	8			Methane Standard		John Fleming				
Actual Conce	ntration		Measured Con	Measured Concentration			All Readings Measured			
		98	98			in Parts per Million				
Sample	Sample	Sample	Sample	Date	Time	OVA		Corrected		
Number	Location	Method	Temperature	Sampled	Sampled	Reading		Reading		
1	North Wall	Grab	85` f.	28-Sep-95	2:30pm	150.00	1	150.0		
2	West Wall	Grab	85` f.	28-Sep-95	2:30pm	180.00		180.0		
3	East Wall	Grab	85` f.	28-Sep-95	2:30pm	200.00		200.0		
4	South Wall	Grab	85` f.	28-Sep-95	2:30pm	150.00		150.0		
5	Under Tank	Grab	85` f.	28-Sep-95	2:30pm	250.00	Technician eming dings Measured per Million Methane ing Reading 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	250.		
6	Piping	Grab	85` f.	28-Sep-95	2:30pm	150.00	0.00	150.		

Limits of Excavation Tonk A902B concrete Curb

Sample	#	Depth
. #	12	3 Ft BGS
	<i>3 4</i>	3 ft 1365 3 ft 1365
	T 5	8 ft B65
	6	2 ft 1365

North

APPENDIX 3

Florida Department of Environmental Regulation

Twin Towers Office Bldg. ● 2600 Blair Stone Road ● Tallahassee, Florida 32399-2400

DER Form #_ 17-761.900(6)	
Form Title_Closure Assessment Form	
Effective Date December 10, 1990	
DER Application No	
(Filed in by DER)	

Closure Assessment Form

Owners of storage tank systems that are replacing, removing or closing in place storage tanks shall use this form to demonstrate that a storage system closure assessment was performed in accordance with Rule 17-761 or 17-762, Florida Administrative Code. Eligible Early Detection Incentive (EDI) and Reimbursement Program sites do not have to perform a closure assessment.

Please Print or Type
Complete All Applicable Blanks

1.	1. Date: 10-12-95	
	2. DER Facility ID Number: 449400050	3. County: Monroe
4.	4. Facility Name: Boca Chica Fuel Farm Fill Station	
5.	5. Facility Owner: U.S. Navy	
6.	6. Facility Address: Building 902	
7.	7. Mailing Address: Naval Air Station Key West, FL 33040	D - 5000
8.	8. Telephone Number: (305) 293-2030 9. Facility	Operator:Jim_Simmons
10.		or B Underground
-	Type of Product(s) Stored:	
f 	Were the Tank(s): (Circle one) A. Replaced B. Removed C.	Closed in Place D. Upgraded (aboveground tanks only)
13.	13. Number of Tanks Closed:1	4. Age of Tanks: 5 years
Yes	Facility Assessment Information Notes No Applicable No No Applicable NA 1. Is the facility participating in the Florida Petroleum I	
<u> </u>	2. Was a Discharge Reporting Form submitted to the	
X	If yes, When: X	vstem?
X	If yes, specify type: Water monitoring Var X 5. Is there free product present in the monitoring well X 6. Were the petroleum hydrocarbon vapor levels in the	s or within the excavation?
X	Specify sample type: Vapor Monitoring wells 7. Were the petroleum hydrocarbon vapor levels in the Specify sample type: Vapor Monitoring wells	e soils greater than 50 parts per million for diesel/kerosene?
X	97 (water sample(s) greater than the allowable state target levels?
$/ \Box$	9. If a used oil storage system, did a visual inspection	
_	10. Are any potable wells located within ¼ of a mile rational 11. Is there a surface water body within ¼ mile radius	- L Mile

Florida Department of Environmental Regulation

Twin Towers Office Bidg. ● 2600 Blair Stone Road ● Tallahassee. Florida 32399-2400

DER Form # 17-761.800(8)	
Undergrand Street	
Underground Storage Tank Instell Form File Removal Forth for Contined Cont	manon &
_	
Stactive Com December 10, 1990	
DER Approximent No.	
(Fand on the DE	P)

Underground Storage Tank Installation and Removal Form For Certified Contractors

Pollutant Storage System Specialty Contractors as defined in Section 489.113, Florida Statutes (Certified contractors as defined in Section 17-761.200, Florida Administrative Code) shall use this form to certify that the installation, replacement or removal of the storage tank system(s) located at the address listed below was performed in accordance with Department Reference Standards.

	the address listed below was performed in accordance with Department F		ieo
Ge	eneral Facility Information	•	
1.	DER Facility Identification No.: 449400050		
2.	Facility Name: Boca Chica Fuel Farm Fill Station	Telephone: (<u>305</u>) <u>293-2881</u>	
3.	Street Address (physical location): Building 902 Naval Air Station, Key West, FL 33040-5000		
4	Owner Name: Commanding Officer (Code 1883)	Telephone: (305) 293-2881	
		040	
6.	Number of Tanks: a. Installed at this time b. Remo	ved at this time 1 Tank A902B	
7 .	Tank(s) Manufactured by:	10.11.05	
5	Date Work Initiated: 9-27-95 9. Date	e Work Completed: 10-11-95	
1. 2.	The tanks and piping are corrosion resistant and approved for use by S. Excavation, backfill and compaction completed in accordance with NFP (American Petroleum Institute) 1615, PEI (Petroleum Equipment Institute). Tanks and piping pretested and installed in accordance with NFPA 30(8 specifications.	late and Federal Laws. A (National Fire Protection Association) 30(87), API RP100-87 and the manufacturers' specifications.	
4.	Steel tanks and piping are cathodically protected in accordance with Ni 1746, STI (Steel Tank Institute) R892-89 and the manufacturer's specifical	FPA 30(87), API 1632, UL (Underwriters Laboratory) titôns.	
5.	. Tanks and piping tested for tightness after installation in accordance with	n NFPA 30(87) and PE!/RP100-87.	
6.	Monitoring well(s) or other leak detection devices installed and tested in Administrative Code (F.A.C.)	accordance with Section 17-761.640, Florida	
7.	Spill and overfill protection devices installed in accordance with Section	17-761.500. F.A.C.	
8.	Secondary containment installed for tanks and piping as applicable in a	ccordance with Section 17-761.500, F.A.C.	
Ple	Note: The numbers following the abbreviations (e.g. API 1615) are pu	ublication or specification numbers issued by these instututi	on:
Ur	nderground Pollutant Tank Removal Checklist		
	Closure assessment performed in accordance with Section 17-761.800,	F.A.C. :	7

2. Underground tank removed and disposed of as specified in API 1604 in acordance with Section 17-761.800, F.A.C.

Southeast District 1900 S. Congress Ave., Suize A. Net Pain Beach, Floride 33408 407-433-2650 APPENDIX 4

OMEGA ENVIRONMENTAL SERVICES 4661 HAMMERMILL ROAD, SUITE B TUCKER, GA 30084 Attn: M. DOUG DRIVER

ANALYTICAL REPORT

Page 1

Submission Number: 9509000339 Date Received: 09/29/95

Date Reported: 10/10/95

Client's P.O. Number: Project Number: 95012 Project Name: KEY WEST NAS

Lab Sample Number: 9339 23 Client Sample Number: A902B Sample Description: GROUND WATER Date Sampled: 09/28/95 Sample Matrix: GROUND WATER

						Date	Date
Method	Analyte	Result	Q	Unit	Analyst	Analyzed	Prepared
418.1	TRPH	1500		MG/L	LL	10/05/95	
239.1	LEAD	0.26		MG/L	BB	10/09/95	
	POLYNUCLEAR AROMATIC HYDROCARBONS						
610	ACENAPHTHENE	< 20	D	UG/L	ODF	10/02/95	09/29/95
610	ACENAPHTHYLENE	< 30	D	UG/L	OD L	10/02/95	09/29/95
610	ANTHRACENE	< 20	D	UG/L	ODL	10/02/95	09/29
610	BENZ(A)ANTHRACENE	< 20	D	UG/L	OD L	10/02/95	09/29/55
610	BENZO(A)PYRENE	< 20	D	UG/L	ODL	10/02/95	09/29/95
610	BENZO(B)FLUORANTHENE	< 20	D	UG/L	ODL	10/02/95	09/29/95
610	BENZO(G,H,1)PERYLENE	< 20	D	UG/L	ODL	10/02/95	09/29/95
610	BENZO(K) FLUORANTHENE	< 20	D	UG/L	ODL	10/02/95	09/29/95
610	CHRYSENE	< 20	D	UG/L	ODL	10/02/95	09/29/95
610	DIBENZO(A, H)ANTHRACENE	< 20	D	UG/L	ODL	10/02/95	09/29/95
610	FLUORANTHENE	< 20	D	UG/L	ODL	10/02/95	09/29/95
610	FLUORENE	< 20	Ð	UG/L	ODT	10/02/95	09/29/95
610	INDENO(1,2,3-CD)PYRENE	< 20	D	UG/L	ODL	10/02/95	09/29/95
610	1-METHYLNAPHTHALENE	910	D	UG/L	ODL	10/02/95	09/29/95
610	2-METHYLNAPHTHALENE	1300	D	UG/L	ODL	10/02/95	09/29/95
610	NAPHTHALENE	550	D	UG/L	ODL	10/02/95	09/29/95
610	PHENANTHRENE	< 20	D	UG/L	ODL	10/02/95	09/29/95
610	PYRENE	< 20	D	UG/L	ODL	10/02/95	09/29/95
504.1	ETHYLENE DIBROMIDE	<0.010	•	UG/L	VRP	09/29/95	09/29/95
	GAG AND KAG AROMATIC VOLATILES						
602	BENZENE	2.2		UG/L	RM	10/04/95	
602	CHLOROBENZENE	<0.50		UG/L	RM	10/04/95	
602	1,2-DICHLOROBENZENE	<0.50		UG/L	RM	10/04/95	
602	1,3-DICHLOROBENZENE	<0.50		UG/L	RM	10/04/95	
602	1,4-DICHLOROBENZENE	<0.50		UG/L	RM	10/04/95	
602	ETHYLBENZENE	120		UG/L	RM	10/04/95	
602	METHYL tert-BUTYL ETHER	<0.50		UG/L	RM	10/04/95	

OMEGA ENVIRONMENTAL SERVICES
4661 HAMMERMILL ROAD, SUITE B
TUCKER, GA 30084
Attn: M. DOUG DRIVER

ANALYTICAL REPORT

Page 2

Date

Date

Submission Number: 9509000339

Date Received: 09/29/95
Date Reported: 10/10/95

Client's P.O. Number: Project Number: 95012

Project Name: KEY WEST NAS

Lab Sample Number: 9339 23 Client Sample Number: A902B Date Sampled: 09/28/95 Sample Matrix: GROUND WATER

Sample Description: GROUND WATER

Method	Analyte	Result Q	Unit	Analyst	Analyzed	Prepared
	GAG AND KAG AROMATIC VOLATILES				· · · · · · · · · · · · · · · · · · ·	
602	TOLUENE	2.2	UG/L	RM	10/04/95	
602	o-XYLENÉ	150	UG/L	RM	10/04/95	
602	m-XYLENE	62	UG/L	RM	10/04/95	
602	p-XYLENE	62	UG/L	RM	10/04/95	
	GAG AND KAG HALOGENATED VOLATILES	•				
601	BROMODICHLOROMETHANE	<0.50	UG/L	RM	10/04/95	
601	BROMOFORM	<0.50	UG/L	RM	10/04/95	
601	BROMOMETHANE	<0.50	UG/L	RM	10/04/95	
601	"CARBON TETRACHLORIDE	<0.50	UG/L	RM	10/04/95	
601	CHLOROBENZENE	<0.50	UG/L	RM	10/04/95	
601	CHLOROETHANE	<0.50	UG/L	RM	10/04/95	
601	CHLOROFORM	<0.50	UG/L	RM	10/04/95	
601	CHLOROMETHANE	<0.50	UG/L	RM	10/04/95	
601	2-CHLOROETHYL VINYL ETHER	<1.5	UG/L	RM	10/04/95	
601	DIBROMOCHLOROMETHANE	<0.50	UG/L	RM	10/04/95	
601	1,2-DICHLOROBENZENE	<0.50	UG/L	RM	10/04/95	
601	1,3-DICHLOROBENZENE	<0.50	UG/L	RM	10/04/95	
601	1,4-DICHLOROBENZENE	<0.50	UG/L	RM	10/04/95	
601	DICHLORODIFLUOROMETHANE	<0.50	UG/L	RM	10/04/95	
601	1,1-DICHLOROETHANE	<0.50	UG/L	RM	10/04/95	
601	1,2-DICHLOROETHANE	<0.50	UG/L	RM	10/04/95	
601	1,1-DICHLOROETHENE	<0.50	UG/L	RM	10/04/95	
601	trans-1,2-DICHLOROETHENE	<0.50	UG/L	RM	10/04/95	
601	1,2-DICHLOROPROPANE	<0.50	UG/L	RM	10/04/95	
601	cis-1,3-DICHLOROPROPENE	<0.50	UG/L	RM	10/04/95	
601	trans-1,3-DICHLOROPROPENE	<0.50	UG/L	RM	10/04/95	
601	METHYLENE CHLORIDE	<0.50	UG/L	RM	10/04/95	
601	1,1,2,2-TETRACHLOROETHANE	<0.50	UG/L	RM	10/04/95	
601	TETRACHLOROETHENE	<0.50	UG/L	RM	10/04/95	

OMEGA ENVIRONMENTAL SERVICES
4661 HAMMERMILL ROAD, SUITE B
TUCKER,GA 30084
Attn: M. DOUG DRIVER

ANALYTICAL REPORT

Page 3

Submission Number: 9509000339

Date Received: 09/29/95

Date Reported: 10/10/95

Client's P.O. Number:

Project Number: 95012

Project Name: KEY WEST NAS

Lab Sample Number: 9339 23

Client Sample Number: A902B

Date Sampled: 09/28/95 Sample Matrix: GROUND WATER

Sample Description: GROUND WATER

Method	Analyte	Result Q	Unit	Analyst	Date Analyzed	Date Prepared
	GAG AND KAG HALOGENATED VOLATILES					
601	1,1,1-TRICHLOROETHANE	<0.50	UG/L	RM	10/04/95	
601	1,1,2-TRICHLOROETHANE	<0.50	UG/L	RM	10/04/95	
601	TRICHLOROETHENE	<0.50	UG/L	RM	10/04/95	
601	TRICHLOROFLUOROMETHANE-	<0.50	UG/L	RM	10/04/95	
601	VINYL CHLORIDE	<0.50	UG/L	RM	10/04/95	

Data Qualifier Code Key:

D - Sample Was Diluted And Result Corrected With Dilution Factor.

CERTIFICATION: All analytical data reported above were obtained using the specified methods and were validated by our laboratory quality control system. This laboratory follows an approved quality assurance program.

Respectfully submitted:

Francis Y. Huang, Ph.D. / Henry N. Ashby

Lab Director / President

										7														\	
			r olab Box 468 ● 8	Fast Tower (Circle		CH	AİN	10	يال	JST	OD	ΥF							<u> </u>			Pa _b .		of
	IVIROLAB	Ormo	nd Beach, Florid 572 - 5668 ● F/	la 32175 - 04	168	FOR LAB								- <u>></u>	Con	ditio	on of	Conte	nts:	See	FOI	R LAB USE	E ONLY		
	STRUCTIONS		FOR LAB USE ONLY Temp. of Contents: Condition of Contents: Condition of Seals: Condition of Seals:																						
1.	Client: (Company &	k individu	al)			Address:	40	66		Hau	1Më	rN	,//	/	Rel				Ph	one: (//		21-9		OR LAB	USE ONLY
C	MEGA	E	AVIR.	5V5,		1	uc	,									008	34	1	c: (<u> </u>	70 P	701116 55	e No.; -∕
ŀ	Report to:(() differ					Address:	-	- 	· · · · · · · · · · · · · · · · · · ·									<u>I</u>		one: (\overline{c}		No.:
						City					· Sı	ate		Zip	Code)			Fax	c: ()				
3.	Client Project N	ame:			WATER CODES	SAMPLE			IER TY M 15)		15.	Con	taine	г Тур	6 :						T		17.	Repo	ort Type
	Key U	Ves	+ nA	5	ITEM13		v .	= V0	A vial		14.	16.	•			7	7	77	//	///	//	/ /	70	 Άοι	utine
4. Client Project No: 95012 DW = dr gw - gr			rinking water round water	P =	= gla = pla = otl	stic					4		//	//	///	/ /	//	/,	//	11		h QC cial Forms			
5.	P. O. No.:				SW = su	ocess water irface water	8. <u>\$</u>	HIPPII	NG ME	THOD:	ners			Qeo.	//	/,	/ /	//		//					
6. Custody Seal No.: WW ≈ W 0 = other			vasto water or	- 🗆) FĘI	DEX	arried	ontainers		720	5/		/		//	/		/ /		18.	Turn	around Time			
7. :	Sampled by:	cha	el Wa	rr-4				Otl		ameu	ot CC	,	£00 /	//	09158	/	//		//	//,				Sta Rus	ndard
Ļ	9. SAMPLE I. D. (NO.)		10. SAMPLE	DESCRIPTION	V 11.	1	12	2.	13, 80 €	- 66 31	7 ·	/	/ /	/ /	/ /	/ /	//	///	/ ,	//				nus /	<u>/ :_/</u>
E M					DA	TE TIM	iE S	S.	(Cod	Sludge			<u> </u>	\angle	<u>L</u> ,	\angle			\angle		19.	REMA	RK	ï	AB USE ONLY LAB, SAMPLE NO
1	A902	B	Ground	& Wate	- 9-	-28 10:	20		sw_		1		X	H	G									(7339-1
2	A902 B		Ground	1 water	1 9-	28 10!	30	LE	w				&K	¥	G										
3	4902 E	3	Ground	& Wate	y 9-	28 10:	30	-	su.		2		S ^K	A	6										
4	A 9021	3	Ground	1 Wate	y 9-	28 10:	30	É	w		a		X X	A	G					1	we	wa	مندم	~	
⑤	A902	3	Ground	1 Wate	r 9-	28 101	30		sur			l 1	XX	1						المنس	la v	+ C0	C Sai	l	
⑥																				GAG	- mi	t kn	ıG.		
7																				Onha	. m	cunt	ماعل	0	
8																				7			an +	133	
9								廿									-	\dashv		KAG			ساکع ل	•	
10								+	_	\vdash					\dashv	_		_ _		14110	•		29.95		
	RELINQUISHED	BY		DATE	TIME	21.	RECE	IVED	BY	1			0/	ATE	l		TIME	L	LA	B USE (ONLY		-	<u></u>	
0	Michael	1 -	Inllan	28 5-pt	3120		-/			hu	itor		19	7	8-9	5				MPLING				HRS.	
0	- HILL CORE	<u>_</u> 4	-						65										SA	MPLE R	ECEIV	ING NO	TE:	·····	
0	•				l	F	th	•	-	71			6	7-2	91	75	100	0	L						

APPENDIX 5

Certificate of Disposal

Omega Environmental Services Inc. certifies that the following listed items have been disposed of in the described manner and all supporting data is accurate and complete. The listed items were disposed of as specified in API 1604 in accordance with Section 17-761.800 F.A.C.

Item Description

Tank A902B 1000 Gallon Steel Tank Building 902. Key West, NAS, Florida

Disposal Method

Tank was Cleaned and disassembled for Disposal at Atlas Iron Processors Inc.

Miami, Florida

Disposal Date

September, 29 1995

Contract Information

Remove Underground Storage Tanks Key West, NAS, Florida Contract No. N62467-93-C-0645 Department of The Navy

We Certify that the above information is accurate and complete.

Omega Environmental Services Representatives

Keith Jackson

with & Jackson

President

John Mount

Project Supervisor

Omega Environmental Services Manifest Shipping Log

Tank A902B

Date	Shipper	Tank #	Manifest #	Quanity	Units
26-Sep-95	EMC	A902B	30116	215	Gallons

Totals	215	Gallons
--------	-----	---------

EMC Oil Corporation

P.O. Box 520882 - Miami, FL 33152

(800) 344-8688

UNIFORM WASTE TRANSPORTERS MANIFEST

NO HAZARDOUS MIXTURES ACCEPTED - READ BOTTOM OF MANIFEST

	١,	Generator's Name and Mailing Address 1996 BASE BASE BOOK ELICA Hey Generator's Phone (305) 296-570	West County at Origin	FL	30K	A. Mar	nifest Document	N	9 030116				
	3	EMC Oil Corporation	4.	JS EPA ID Num	ber	C. Sta	le Transporter's I) UO 4				
	-	8470 N.W. 68th Street, Miami, FL 33166		LR000000	166		nsporter's Phone						
	3	Designated Facility Name and Site Address	6.				<u> </u>	W-01124 W-00227 W-00233	· · · · · · · · · · · · · · · · · · ·				
			· 			ì	ility's Phone (5) 477-7497						
	7	US DOT Description (Including Proper Shipping Nati	me, Hazard Class, and	ID Number)	8. Conta No.		9. Total Quantity	10 Unit Wt. Vol	G. CHARGES				
	а		4.070				00		THE 28				
G	-	Oil NOS - Combustible Liquid N	A 1270				<u>893</u>		1				
E N E	ľ	Used Oil Filters											
R A T O R	c	Wet Petro Oily Water / Sludge	Dost For	e Pacy			215		HOUR A-902B				
· ·	d	CONTRACTED BY CONTROL)						
	F	Additional Descriptions for Materials Listed Above	IMPORTANT Payment service charge of 1% charged on over 30 day it shall become necess sums or any part therecall the replaceable cost	\$ (18% per annu s past due balance. ary to collect the he x, the purchaser ag	m) will be in the event erein above	Please pay on this invoice within 15 days.							
	1	Thank you 11. GENERATOR'S CERTIFICATION: I hereby declare that the contents of this consignment are fully and accurately described above by proper shipping name and are classified, packed, marked, and labeled, and are in all respects in proper condition for transport by highway according to applicable international and national government regulations.											
		I also confirm that the contents of this consignment contain	ns no hazardous materials	s .									
	1	unled Typed Name DMichael Warre	u	Signature	Wall	nel	Take		Month Day Year				
T R A	Ţ,	2. Transporter 1 Acknowledgment of Receipt of Mater					1						
NSP Y	1	pured Typed Name DEORCE L. VINCE	wt	Signature	10	·	11/2	/	Month Day Year				
F A C	1	3 Facility Owner or Operator: Certification of receipt	of waste material cove	ered by this man	nites								
C L T Y	F	rinled Typed Name		Signature					Month Day Year				
	<u></u>	Broward County #'s 532 [533 🗆	534 🗆	535		536 🗆	537					
	De	ar Generator. The following chemicals contain ha	_	.									

DO NOT MIX WITH USED OIL

Antifreeze - Freon - Solvents - Thinner - Degreasers - Detergents - Cleaners - Radiator Fluid - Leaded Gasoline - Cutting Oil

CAN MIX WITH USED OIL

Motor Oils - Diesel Fuel - Grease - Brake Fluids - Hydraulic Fluids - Transmission Fluids

These lists are based on current information and may be expanded as more data becomes available. THANK YOU.

WHITE - Generator GREEN - Generator YELLOW - Transporter PINK - Transporter GOLDENROD - Transfer Station

APPENDIX 6

PART 1 (Complete by requestor)

Dare: Luly 10 Ge
To: Public Works Officer, NAS. Key West Applicant's Request No. 7
It is requested that a permit be issued for performing the work required by: 1. <u>CONTRACT # 93-0645 Remove VNDER Ground Tanks OMEGA ENU.</u> (Reference contract, drawing, specifications, service call, etc. (include prime contractor or A/E identification.)
2. EXCAVATION 3. (Type: drill, dredge, trench, etc.) (Charge to job order; etc.)
4. Physical limits: FUEL FARM FILL STATION _ SEE SITE PLAN
5. Remarks: TANK Presently IN-USE (Includes results of any investigation not performed by PWD.)
Felon H. Pett Signature & Title
PART II (Completed by PWD) (Strike out non-applicable portions.)
To: PW ENG INGEREING TO: POICE Date: 7/19/95
The work delineated above may be undertaken pursuant to the following stipulations
a. No contractual or other obligations are changed by this permit. Responsibility for damages are not changed by this permit.
b. PWD has examined the work by: Visual inspection in the field Examination of existing plans Investigation with magnetic pipe locator, etc.
Unknown subsurface conditions may exist which connot be located by any of these standard procedures.
c. Southern Bell Telephone Company must be contacted by requestor prior to diggin
d. The PWD survey indicates that your planned procedure will probably not conflic with existing facilities. You are, therefore, granted permission to perform the work.
e. The PWD investigation indicates: <u>OK TO EXCAUATE</u> AS INDICATED
PERMIT NO. 255 Signature & Title Engineering Division

APPENDIX 7

No Photographs Available

Air Force Restricted Area

"COMMITTED TO EXCELLENCE!"
Working in partnership with local communities to help people be self-sufficient, experience good health and live in stable families and communities.

July 3, 1996

Jim Simmen Naval Air Station Public Works Code 1883 P. O. Box 9007 Key West, FL 33040-9001

> Re: Monroe County - TK CCL/96-101 Facility ID# 449400050 Truck Fill Stand

Dear Mr. Simmen:

This office received a report dated October 25, 1996, regarding the petroleum storage tank closure at the referenced facility. It was reviewed to determine compliance with the State Storage Tank Rules (Chapter 62-761 FAC for underground tanks and 62-762 FAC for aboveground tanks) and guidelines. The report does not meet the requirements of the Department of Environmental Protection for a Closure Assessment Report. The review revealed:

- 1. a DRF was not filed with this office.
- 2. contaminated soils were returned to the pit.
- 3. free product was not recovered.

To bring this report into compliance:

- 1. send a DRF for this discovery.
- 2. remove and properly dispose of contaminated soils.
- 3. remove free product exposed in the pit.

Correct the items listed above within 30 days of receipt of this letter. Send documents or copies to my attention at the letterhead address of the Key West office. Another review will be conducted to verify that these items have been completed.

Call John Carter at 305/292-6894 if you have any questions or write to the Key West office.

MONROE COUNTY PUBLIC HEALTH UNIT
P.O Box 6193 • Key West, FL 33041-6193 • (305) 292-6894 Fax # 292-6872
7999 Overseas Highway • Marathon, FL 33050 • (305) 289-2450 Fax # (305) 289-2479
P.O. Box 157 • Tavernier, FL 33070 • (305) 853-3240 Fax # (305) 853-3242

Respectfully,

John Carter

Environmental Specialist

CC:

C. H. Moss, PE Omega Environmental Services, Inc. 4661 Hammermill Road, Suite B Tucker, GA 30084

DEPARTMENT OF THE NAVY

NAVAL AIR STATION PO BOX 9001 KEY WEST FL 33040-9001

> 5090 Ser 1883JS/1378 3 Oct 96

John Carter State of Florida Department of Health and Rehabilitative Services PO Box 6193 Key West, FL 33041-6193

Dear Mr. Carter:

On 3 July, 1996, you reviewed a closure report for the underground storage tank A-902B, submitted to you in September, 1995. Several discrepancies were found that needed correcting. The inspection revealed:

- 1. A DRF was not filed with this office.
- 2. Contaminated soils were returned to the pit.
- Free product was not recovered.

Corrections made since the 3 July 1996 letter:

- 1. A DRF was filed with your office on 30 July 1996.
- 2. On 28 August, 1996, three dump truck loads of contaminated soil was removed from the tank location (approximately 24 cubic yards). The dirt was removed from a twelve foot diameter. The dirt was contaminated all the way down to the water table.
- 3. No free product was visible on the water table.

Should you have any questions or require further information on any of these items, please contact our Tank Program Manager, Mr. Jim Simmen, at 293-2881.

Sincerely,

R. A. DEMES

Engineering Director Public Works Department By direction of

the Commanding Officer

Copy to:

FDEP, Marathon (Lisa Gordon)

Florida Department of Environmental Regulation

Twin Towers Office Bidg. • 2600 Blair Stone Road • Tallahassee, Florida 32399-2400

Discharge Reporting Form

Use this form to notify the Department of Environmental Regulation of:

- 1. Results of tank tightness testing that exceed allowable tolerances within ten days of receipt of test result.
- 2. Petroleum discharges exceeding 25 gallons on pervious surfaces as described in Section 17-761.460 F.A.C. within one working day of discovery.
- 3. Hazardous substance (CERCLA regulated), discharges exceeding applicable reportable quantities established in 17-761.480(2) F.A.C., within one working day of the discovery.
- 4. Within one working day of discovery of suspected releases confirmed by: (a) released regulated substances or pollutants discovered in the surrounding area, (b) unusual and unexplained storage system operating conditions, (c) monitoring results from a leak detection method or from a tank closure assessment that indicate a release may have occurred, or (d) manual tank gauging results for tanks of 550 gallons or less, exceeding ten gallons per weekly test or five gallons averaged over four consecutive weekly tests.

Mail to the DER District Office in your area listed on the reverse side of this form PLEASE PRINT OR TYPE

Complete all applicable blanks 1. DER Facility ID Number: 449400050 2. Tank Number: A 935 3. Date: July 30 1996 NAVAL AIR STATION Facility Owner or Operator: Commanding OFFICER Facility Address: NAVAL BIR STATION (code 1883, Key West FL. 33040 Telephone Number: (305) 293-288/ County: Malling Address: Commanding OFFICER NAVAL AIR STATION (Code 1823 _ month/day/year 5. Date of receipt of test results or discovery: 6. Method of initial discovery. (circle one only) F._Vapor or visible signs of a discharge in the vicinity. D. Emptying and Inspection. A. Liquid detector (automatic or manual) (Cosure: _____ (explain) E. Inventory control. B. Vapor detector (automatic or manual) C. Tightness test (underground tanks only). 7. Estimated number of gallons discharged: ____ UNKNOWN El. Pipe C. Fitting D. Tank (E Unknown 8. What part of storage system has leaked? (circle all that apply) A. Dispenser 9. Type of regulated substance discharged. (circle one) V. hazardous substance includes pesticides, ammonia, D. vehicular diesel L. used/waste oil A. leaded gasoline chlorine and derivatives (write in name or Chemical Abstract B. unleaded gasoline (F) aviation gas M. diesel Service CAS number)_ C. gasohol G. iet fuel O. new/lube oil Z. other (write in name) ___ 10. Cause of leak. (circle all that apply) G. Spill ___ l. Other (specify) <u>いかい 「emal</u> C. Loose connection E. Puncture (A) Unknown The THINK Was soun H. Overfill F. Installation failure D. Corrosion B. Split 11. Type of financial responsibility. (circle one) C. Not applicable A. Third party insurance provided by the state insurance contractor B. Self-insurance pursuant to Chapter 17-769.500 F.A.C. D. None 12. To the best of my knowledge and belief all information submitted on this form is true, securate, and complete. JULy 30,19 Jones M. Simmen TANK PROCESIM

160 Governmental Center Pensacola, Floride 32501-8794 904-436-8300

Printed Name of Owner, Operator or Authorized Representative

Signature of Owner, Operator or Authorized Representative

APPENDIX C

IDW MANIFESTS

(732) 462-1001 • FAX (732) 308-0924

108 MONAHAN AVENUE DUNMORE, PA 18512 PHONE: (717) 342-7232 FAX: (717) 342-7367

175 BARTOW MUN. AIRPORT

BARTOW, FL 33830

PHONE: (941) 533-4599 FAX: (941) 533-1613

350 PIGEON POINT ROAD NEW CASTLE, DE 19720 PHONE: (302) 658-2005 FAX: (302) 658-6229

156 DRIFTWOOD DRIVE **EUTAWVILLE, SC 29048** PHONE/FAX: (803) 492-9595 MANIFEST FCI EPA ID NO.: NJD054126164

I 87989

		ATOR NAME/ADDRESS		PHONE					GENERATOR EPA ID N	O. 1	_	I
	M.	A. S CHICA)				-258	3_		106/17	000	12/7:	را ر
1 .				TRACT	OR	TRAILER	1		APPOINTMENT TIME	: 17		
FCI	ر BFE	P. LOADING (PRINT)	1090 PROCEDURE		BOX SPOTTED	27/ Box	REMOVE	n l	TIME AT GENERATOR	TURNA) S	ARY TIME ONL	VI.
	· ·	TRAWICK	PL						ARRIVAL TIME		ARTURE TIME	
CO	MME	NTS OR DELAYS AT GENERATOR							EQUIPMENT USED			
BE	ink	er Zece						<u>_</u>				
PC			NO#:		S	TATE M	ANIF	EST	NO.: Fra	~71	791	
(X) HM		PROPER U.S. D.O.T. SHIPPING NA	1211		NA/UN/NO.	PACKING GROUP	. NO. CONT.	CONT. TYPE		UNIT MEASURE	WASTE NO.	FORM
	1	SEX MAMITES	7 10	7/7	7/		ħ	in	(
	2											
ļ	3											
		L HANDLING INSTRUCTIONS INCLUE	DING CONTAINER E	XEMPTK	ON (I.E., IDENTIFIC	L CATION SHIPN	MENT OF	A NON-	HAZARDOUS NATURE	MHICH D	DES NOT HA	VE TO
DE	MAN	NIFESTED).							127	C714	·c	
tran	spor Trea	ATOR'S CERTIFICATION: This is to ce tation according to the applicable regula atment, Storage or Disposal Facility can wledge.	tions of the Departme	ent of Trai	nsportation, Ú.S. EF	A and the State	e. The was	stes des	ed, marked and labeled cribed above were consig	and are in med to the	proper condit Transported r	named.
		nt to the contractor for waste removal doe ontractor.	s not constitute paym	ent to the	carrier and if the co	ontractor does	not pay the	e carrier.	the generator is obligate	d to pay th	e agreed rate o	offered
PLE	ASE	PRINT NAME/TITLE			NERATOR'S SIGN	ATURE	1 - 125	1611	·	TE LOAD	ED 71	1
				THAYE READ THE ABOVE AND UNDERSTAND AND AGREE TO ALL OF ITS CONTENT.							DAY	YA.
		AME/ADDRESS		PHONE > <	and the same of th				TSDF EPA ID NO.	1 1	1 1 1	. 1
,	7 /	ISHEA		(AREA	CODE) 97.	2-53	10		기간 살기간	101		? <u>\$</u>
/		Cur A (3700	<u> </u>	TRACT	On	TRAILER		X Pro-	APPOINTMENT TIME			
FCI	REF	UNLOADING (PRINT)	PROCEDURE	•	BOX SPOTTED	BOX	REMOVE	D	TIME AT TSDF		ARY TIME ONL	
co	ММЕ	ENTS OR DELAYS AT TSDF		 		<u> </u>			ARRIVAL TIME EQUIPMENT USED	DE	ARTURETIME	
				,								-
PLE	ASE	PRINT NAME/TITLE		TSI X	OF SIGNATURE					TE UNLC	/	
<u></u>										MO.	DAY	YR.
0	T C DE C	H-0257 ME ME-HWT PC 944 ME-WOT CT-HW-307 MD HWH-167 DE-HW-203 96-OP-17 DE-SW-203 MA MA-294 SWH-1540 MN 61572	-47 ND NH 765 NJ	H-1490 WH-429 TNH-00 S-2265 15939 JA-113) (47 (47 (47 (47 (47 (47 (47 (47 (47 (47	NOVA SCOTIA DH 333-HW DK 3358 DNTARIO, CAI PA PA-AH-00	NADA A		RI RI TX 40	-535 705	DATQC-6ML-(047

HAZARDOUS WASTE MANIFEST (AS REQUIRED BY THE ALABAMA DEPARTMENT OF ENVIRONMENTAL MANAGEMENT)

		ER INDUSTRIAL SERVICE, IN ember of The North American Group Ltd / 1.			Form Approved OM	B No. 2050)-0039. Expires 9-30-9
		US EPA ID No.	Artifest Jument No	Pa) of		n in the sh	aded areas is not
	3. Generator's Name and Mailing Address MAVAL AIR MAIL to: JUA 300 9007 SHANCEL	STATION - BIJE ASO. STATION - BIJE ASO. FL. COMMOUTING OF		ا منا	te Manifest Documents 00717	1 Number	
	4. Generator's Phone (954) 570-5885 April 2010	FL. 23040-9001	icer, NA		te Generator's ID		
	5. Transporter 1 Company Name	6. US EPA ID Number		C. Sta	te Transporter's ID		
	FREEHOLD CARTAGE, INC. 7. Transporter 2 Company Name	N J D 0 5 4 1 2 6			nsporter's Phone	800.	/771-1050
				35 35 35	te Transporter's ID		
	9. Designated Facility Name and Site Address	10. US EPA ID Number		G. Sta	te Facility's ID		
	Fisher Industrial Service, Inc. 402 Webster Chapel Rd.			H. Fac	LD9810208 ility's Phone		
$\ \ $	Glencoe, AL 35905 11. US DOT Description (Including Proper Shipping Name, Hazard Class,		8 9 4		<u>56) 492-83</u>	T	
	11. 00 DOT Description (including Proper Shipping Name, Hazard Class,	and ID Numberj	12. Contai	1	13. Total	14. Unit	I. Waste No.
	a. NON HAZARDOUS MATERIAL (PETROLI (Contains PETROLEUM SOIL) NA	EUM SOIL),	No.	Туре	Quanitity	Wt/Vol	. 1
		FIS Profile #: 3 9 1 8 5	00.5	D M	0.0.2.7.5	G	None
E	b. NON REGULATED MATERIAL (PETROLI (Contains PETROLEUM CONTAMINATI						
N E R	CONCERNS I ENCORED CONTRAINMENT		0.1.4	D, M	00.7.7.0	G	None
A T O	c.			-			
R	The state of the s	FIS Profile #:	<u> </u>		<u> </u>		
	d.	FIS Profile #:					
bytoka	J. Additional Descriptions for Materials Listed Above Transporter	has E.R.G. Book.	. · ·	K. Han	dling Codes for Was	tes Listed	Above
	FLORIDA			; 	501	In	141
	State of Origin: 15. Special Handling Instructions and Additional Information TECHNICAL CONTACT:	24 Hr. Emergency Response Name/Nur	nber: RTC	K OF	SANKO		
	FLORIDA ENVIRONMENTAL COMPLIANO	CE CORP (954) 5				
	800/771-1050 Work Order #:	CUS Purchase Order #:	STOMER	NO.	1646		
	16. GENERATOR'S CERTIFICATION: I hereby declare that the contents of marked, and labeled, and are in all respects in proper condition for trans	of this consignment are fully and accurate	bly described	above by	y proper shipping na	me and ar	e classified, packed,
	If I am a large quantity generator, I certify that I have a program in place to and that I have selected the practicable method of treatment, storage, or di OR, if I am a small quantity generator, I have made a good faith effort to	reduce the volume and toxicity of waste sposal currently available to me which mir	generated to	the degre	ee I have determined	to be eco	and the environment:
V	can afford. Printed/Typerd Name A M Gley !!!	Signature Away	iia.	1	Mycil	P M	onth Day Year
TR	17- Transporter 1 Acknowledgment of Receipt of Materials		/	7	- 17000	1 J. J.	· ~ · · · · · · · · · · · · · · · · · ·
TRANSPORTER	JOSEPH AN TRAWICK	Signature		Wil	hill	M.	onth Day Year
R	18. Transporter 2 Acknowledgment of Receipt of Materials Printed/Typed Name	Signature		····			
Ē		7 Signature					onth Day Year
	19. Discrepancy Indication Space				···		<u>- </u>
F A C							
	20. Facility Owner or Operator: Certification of receipt of hazardous materi	als covered by this manifest except as n	noted in Item	19.			
¥	Printed/Typed Name	Signature				M	onth Day Year

CTO 0031

APPENDIX D

SOIL BORING LOGS

BASE: NAS Key West	SITE ID: Truck Fill Stand	PROJECT NO. C	PROJECT NO. CTO-0031 / N7586						
BORING ID: A902-SB01	WELL ID:	PIEZOMETER I							
CONTRACTOR: Precision Sampling, Inc.	COMPLETION DATE: 06/23/98	LOGGED BY: P.							
METHOD: EnviroCore DPT	DIAMETER: 2.5" OD	TOTAL DEPTH:	6ft bls						
TOC ELEVATION: ft MSL	SCREEN INTERVAL: ft bis	DEPTH TO ¥ 3	ft bis						
DEPTH FT. LAB SAMPLE ID. SAMPLE CORRECTED HEADSPACE (ppm)	THILOGIC DESCRIPTION AND COMMENTS	LITHOLOGIC SYMBOL SOIL CLASS	BLOW COUNTS WELL DATA						
120 coarse grained, s moderately conso	tic, light brown to beige, sandy, some shell fragments, hard, olidated, moderately to highly granlular to moldic porosity.	CHAPTER CONTROL CONT							
5		TO THE							
10—									
15	PAGE 1 of A902SB01		Tetra Tech NUS						

BASE: NAS Key Wes	t			SITE ID: Truck Fill Stand	PROJEC	CT NO.	CTO-0031	/ N7586	
BORING ID: A902-S	B02			WELL ID:	PIEZO	ETER	ID:		
CONTRACTOR: Precis	sion Sam	pling,	Inc.	COMPLETION DATE: 06/23/98	LOGGE	D BY: P	. Calligan		
METHOD: EnviroCore	DPT			DIAMETER: 2.5" OD	TOTAL	DEPTH	: 6ft bis		
TOC ELEVATION: f	ft MSL			SCREEN INTERVAL: ft bis	DEPTH	TO ♀ 3	ft bls		
DEPTH FT. LAB SAMPLE ID.	SAMPLE RECOVERY	RECOVERY CORRECTED HEADSPACE (ppm)		HILOGIC DESCRIPTION AND COMMENTS	LITHOLOGIC SYMBOL	LITHOLOGIC SYMBOL SOIL CLASS			WELL DATA
5—		310	coarse grained, so moderately consoli	, light brown to beige, sandy, me shell fragments, hard, dated, moderately to highly anlular to moldic porosity.					
10									
15			5	AGE 1 of A902SB02			Tale	a Tech	NII IO

ORING ID: A902-5 Ontractor: Pred	SB03			SITE ID: Truck Fill Stand	PROJECT NO. CTO-0031 / N7586				
				WELL ID:	PIEZOMETER	I ID:			
	ision Sam	pling, I	Inc.	COMPLETION DATE: 06/23/98	LOGGED BY:	P. Calligan			
ETHOD: EnviroCor	e DPT			DIAMETER: 2.5" OD	TOTAL DEPT	H: 6ft bls			
OC ELEVATION:	ft MSL			SCREEN INTERVAL: ft bis	DEPTH TO \$	3 ft bis			
DEPTH FT. LAB SAMPLE ID.	SAMPLE RECOVERY	CORRECTED HEADSPACE	Ē LIT	HILOGIC DESCRIPTION AND COMMENTS	LITHOLOGIC SYMBOL SOIL CLASS	BLOW	WELL DATA		
5—		1680	coarse grained, so moderately conso weathered, interg	c, light brown to beige, sandy, ome shell fragments, hard, lidated, moderately to highly ranlular to moldic porosity.					
10									
15—									

BASE: NAS Key We	st			SITE ID: Truck Fill Stand	PROJECT NO.	CTO-0031 / N7	586
BORING ID: A902-	SB04			WELL ID:	PIEZOMETER :	ID:	
CONTRACTOR: Pred	cision Sam	pling,	Inc.	COMPLETION DATE: 06/23/98	LOGGED BY: P.	. Calligan	
METHOD: EnviroCo	re DPT			DIAMETER: 2.5" OD	TOTAL DEPTH	: 6ft bls	
TOC ELEVATION:	ft MSL			SCREEN INTERVAL: ft bis	DEPTH TO ¥ 2	ft bis	
DEPTH FT. LAB SAMPLE IO.	SAMPLE RECOVERY	CORRECTED HEADSPACE	E LI	THILOGIC DESCRIPTION AND COMMENTS	LITHOLOGIC SYMBOL SOIL CLASS	BLOW	WELL DATA
5		950	coarse grained, so moderately conso	c, light brown to beige, sandy, ome shell fragments, hard, lidated, moderately to highly ranlular to moldic porosity.			
10—							
15—		1		PAGE 1 of A902SB04		Tetra T	ech NUS

ASE: NAS Key We	st		SITE 1	D: Truck Fill Stand	PROJECT NO. CTO-0031 / N7586				
ORING ID: A902-	SB05		WELL I	D:	PIEZOMETER 1	D:			
ONTRACTOR: Pred	cision San	npling,	inc. COMPL	ETION DATE: 06/23/98	LOGGED BY: P.	Calligan			
IETHOD: EnviroCo	re DPT		DIAME	TER: 2.5" OD	TOTAL DEPTH	6ft bls			
OC ELEVATION:	ft MSL		SCREE	N INTERVAL: ft bis	DEPTH TO ¥ 2	ft bls			
DEPTH FT, LAB SAMPLE ID.	SAMPLE	CORRECTED	LITHILOGIC AND CO	DESCRIPTION MMENTS	LITHOLOGIC SYMBOL SOIL CLASS	BLOW	WELL DATA		
- ₹		215	LIMESTONE, oolitic, light br coarse grained, some shell moderately consolidated, m weathered, intergranlular to	fragments, hard, loderately to highly					
					HARLEST DE STATE DE S				
0-									

IASE: NAS Key West		SITE ID: Truck Fill Stand	PROJECT NO. C	TO-0031 / N7586
ORING ID: A902-SB06		WELL ID:	PIEZOMETER I):
CONTRACTOR: Precision S	ampling, Inc.	COMPLETION DATE: 06/23/98	LOGGED BY: P.	Calligan
IETHOD: EnviroCore DPT		DIAMETER: 2.5" OD	TOTAL DEPTH:	6ft bls
OC ELEVATION: ft MSL		SCREEN INTERVAL: ft bis	DEPTH TO ¥ 2	ft bis
DEPTH FT. LAB SAMPLE ID. SAMPLE	CORRECTED (ppm)	ITHILOGIC DESCRIPTION AND COMMENTS	LITHOLOGIC SYMBOL SOIL CLASS	BLOW COUNTS WELL DATA
5	110 coarse grained, moderately cons	itic, light brown to beige, sandy, some shell fragments, hard, solidated, moderately to highly rgranlular to moldic porosity.		
0				
₁₅				

BA	SE: N	AS Key We	st				SITE ID: Truck Fill St	and	PROJE	CT NO.	CTO-0031 /	N7586	
BC	RING	ID: A902-	SB07	7			WELL ID:		PIEZO	METER	ID:		
CC	NTRA	CTOR: Pred	isior	Samp	oling, I	nc.	COMPLETION DATE: 0	6/23/98	LOGGE	D BY: F	P. Calligan		
ME	THOD	: EnviroCo	re DF	T'			DIAMETER: 2.5" OD		TOTAL	DEPT	4: 6ft bis		
TO	C ELE	EVATION:	ft M	SL			SCREEN INTERVAL:	ft bls	DEPTH	TO ₹	3 ft bls		
					····								
HEPTH		LAB SAMPLE 10.		RECOVERY	CORRECTED HEADSPACE	LIT	HILOGIC DESCRIPTION AND COMMENTS		LITHOLOGIC	SOIL CLASS	BLOW		WELL DATA
-	- ₹				1400	coarse grained, so moderately consol	c, light brown to beige, some shell fragments, har iidated, moderately to he ranlular to moldic porosi	d, ighly					
									THE HELD OF THE PERSON OF THE				
10													
ison v													
	5 <u> </u>		•		·		PAGE 1 of A902SB	07			Tetr	a Tech	NUS

BASE: NAS Key West	SITE ID: Truck Fill Stand	PROJECT NO. CTO-0031 / N7586	
BORING ID: A902-SB08	WELL ID:	PIEZOMETER ID:	
CONTRACTOR: Precision Sampling, Inc.	COMPLETION DATE: 06/23/98	LOGGED BY: P. Calligan	
METHOD: EnviroCore DPT	DIAMETER: 2.5" OD	TOTAL DEPTH: 6ft bis	
TOC ELEVATION: ft MSL	SCREEN INTERVAL: ft bis	DEPTH TO ¥ 3 ft bis	
DEPTH FT. LAB SAMPLE ID. SAMPLE RECOVERY CORRECTED HEADSPACE (ppm)	THILOGIC DESCRIPTION AND COMMENTS	LITHOLOGIC SYMBOL SOIL CLASS BLOW COUNTS	WELL DATA
100 coarse grained, so moderately conso	ic, light brown to beige, sandy, ome shell fragments, hard, lidated, moderately to highly ranlular to moldic porosity.		
₁₅	PAGE 1 of A902SB08	Tetra Tech NU	ıs

BASE: NAS Key I	West			SITE ID: Truck Fill Stand	PROJECT NO. CT	0-0031 / N7586
BORING ID: A902	2-SB09			WELL ID:	PIEZOMETER ID	
CONTRACTOR: Pr	ecision Sar	npling,	Inc.	COMPLETION DATE: 06/23/98	LOGGED BY: P. C	alligan
METHOD: EnviroC	ore DPT			DIAMETER: 2.5" OD	TOTAL DEPTH:	6ft bis
TOC ELEVATION	ft MSL			SCREEN INTERVAL: ft bis	DEPTH TO ¥ 3 f	t bls
OEPTH FT. LAB SAMPLE ID.	SAMPLE RECOVERY	CORRECTED HEADSPACE	Ē LIT	HILOGIC DESCRIPTION AND COMMENTS	LITHOLOGIC SYMBOL SOIL CLASS	BLOW COUNTS
¥		265 975	coarse grained, so moderately consol	c, light brown to beige, sandy, me shell fragments, hard, idated, moderately to highly anlular to moldic porosity.		
5—						
10						
15—				PAGE 1 of A902SB09		Tetra Tech NUS

BASE: NAS Key We	est		SITE ID: Truck Fill Stand	PROJECT NO. CTO-	-0031 / N7586
BORING ID: A902-	SB10		WELL ID:	PIEZOMETER ID:	
CONTRACTOR: Pred	cision Sam	npling, Inc.	COMPLETION DATE: 06/24/98	LOGGED BY: P. Cal	ligan
METHOD: EnviroCo	re DPT		DIAMETER: 2.5" OD	TOTAL DEPTH: 6f	t bls
TOC ELEVATION:	ft MSL		SCREEN INTERVAL: ft bis	DEPTH TO \$ 3 ft t	ols
DEPTH FT. LAB SAMPLE ID.	SAMPLE	CORRECTED HEADSPACE (Ppm)	THILOGIC DESCRIPTION AND COMMENTS	SYMBOL SYMBOL SOIL CLASS	COUNTS
5		coarse grained, s moderately conso	ic, light brown to beige, sandy, ome shell fragments, hard, lidated, moderately to highly translular to moldic porosity.		
10					
15—			PAGE 1 of A902SB10		Tetra Tech NUS

BASE: NAS Key Wes	st			SITE ID: Truck Fill Stand	PROJE	CT NO.	CTO-0031/	N7586
BORING ID: A902-S	B11			WELL ID:	PIEZO	METER	ID:	
CONTRACTOR: Preci	ision Sam	pling, 1	Inc.	COMPLETION DATE: 06/24/98	B L066	ED BY:	R. Ofsanko	
METHOD: EnviroCore	e OPT			DIAMETER: 2.5" OD	ATOTA	L DEPTI	H; 6ft bis	
TOC ELEVATION:	ft MSL			SCREEN INTERVAL: ft bis	DEPT	н то ұ	3 ft bis	
DEPTH FT. LAB SAMPLE ID.	SAMPLE	CORRECTED HEADSPACE	E LIT	HILOGIC DESCRIPTION AND COMMENTS	LITHOLOGIC SYMBOL	SOIL CLASS	BLOW	WELL DATA
- ₽		125 3470	coarse grained, so moderately consol weathered, intergr	c, light brown to beige, sandy, ome shell fragments, hard, idated, moderately to highly aniular to moidic porosity.				
5—								
10—								
15—	i I	Ţ		PAGE 1 of A902SB11			~	Tech NUS

	BASE: NAS Key We	st			SITE ID: Truck Fill Stand	PROJEC	ET NO.	CT0-0031	/ N7586	
COMPLETION DATE: 08/24/88 LOGGED BY; R. Ofsanko METHOD: EnviroCore DPT DIAMETER: 25° 0D TOTAL DEPTH: 8ft bis DEPTH TO \$3 it bis LITHILOSIC DESCRIPTION AND COMMENTS DIAMETER: 05° 0D DEPTH TO \$3 it bis LITHILOSIC DESCRIPTION AND COMMENTS DIAMETER: 05° 0D DEPTH TO \$3 it bis LITHILOSIC DESCRIPTION AND COMMENTS DIAMETER: 05° 0D DEPTH TO \$3 it bis DEPTH TO \$4 it bis DEPH	BORING ID: A902-	SB12			WELL ID:	PIEZON	ETER	ID:		
TOC ELEVATION: IT MSL SCREEN INTERVAL: IT bis DEPTH TO \$ 3 It bis LITHILOGIC DESCRIPTION AND COMMENTS DEPTH TO \$ 3 IT bis SUBJECT TO \$ 1 It bis LITHILOGIC DESCRIPTION AND COMMENTS DEPTH TO \$ 3 IT bis LITHILOGIC DESCRIPTION AND COMMENTS DEP			pling,	Inc.	ļ					
TOC ELEVATION: IT MSL SCREEN INTERVAL: IT bis DEPTH TO \$ 3 It bis LITHILOGIC DESCRIPTION AND COMMENTS DEPTH TO \$ 3 IT bis SUBJECT TO \$ 1 It bis LITHILOGIC DESCRIPTION AND COMMENTS DEPTH TO \$ 3 IT bis LITHILOGIC DESCRIPTION AND COMMENTS DEP					DIAMETER: 2.5" OD					
Habit Branch See The County of									·	
LIMESTONE, opilitic, light brown to beige, sandy, coarse grained, some shell fragments, hard, moderately consolidated, moderately to highly weathered, intergraniular to moldic porosity. NS Refusal	TOO ELLVATION.	TENOL		***	CONCERTACE TO DIS	- DEI III	10 4	<u> </u>		
asymptotic considerate of the property of the	DEPTH FT. LAB SAMPLE ID.	SAMPLE	CORRECTED HEADSPACE	E LITI		LITHOLOGIC SYMBOL	SOIL CLASS	BLOW		WELL DATA
				coarse grained, so moderately consoli weathered, intergra	ome shell fragments, hard, idated, moderately to highly					
15	10									

BASE: NAS Key Wes	st			SITE ID: Truck Fill Stand	PROJECT	NO. CTO-0	D31 / N7586	
BORING ID: A902-S	SB13			WELL ID:	PIEZOME	TER ID:		
CONTRACTOR: Prec	ision Sam	pling, I	Inc.	COMPLETION DATE: 06/24/98	LOGGED	BY: R. Ofsar	iko	
METHOD: EnviroCor	e DPT			DIAMETER: 2.5" OD	TOTAL	DEPTH: 6ft b	ols	
TOC ELEVATION:	ft MSL			SCREEN INTERVAL: ft bis	DEPTH 1	0 ♀ 3 ft bls		
DEPTH FT. LAB SAMPLE ID.	SAMPLE RECOVERY	CORRECTED HEADSPACE	E LIT	HILOGIC DESCRIPTION AND COMMENTS	LITHOLOGIC	SOIL CLASS BLOW COUNTS		WELL DATA
5		1000	coarse grained, so moderately consoli	c, light brown to beige, sandy, ome shell fragments, hard, idated, moderately to highly anlular to moldic porosity.				
10								
15		1	l	PAGE 1 of A902SB13		т	etra Tec	h NIIS

BORING ID: A002-SBI4 CONTRACTOR: Precision Sempling, Inc. COMPLETION DATE: 08/24/98 LOSEED BY: R. O'sanko TOC ELEVATION: 11 MSL SCREEN INTERVAL: 11 bis DEPTH: 07 2 11 bis LITHILOSIC DESCRIPTION AND COMMENTS BY COATS GRANG MODERATE STORE, collicit, light brown to beige, sandy, coarse grained, some shell fragments, hard, moderately consolidated, moderately to highly weathered, intergranklar to moldic porosity.	IASE: NAS Key West		SITE ID: Truck Fill Stand	PROJECT NO. CTO-0031 / N758	6
ACTION: EnviroCore DPT DIAMETER: 2.5" OD TOTAL DEPTH: 6ft bis DEPTH TO \$ 2 ft bis DEPTH TO \$ 2 ft bis LITHILOGIC DESCRIPTION AND COMMENTS DIAMETER: 2.5" OD DIAMETER: 2.5" OD DEPTH TO \$ 2 ft bis LITHILOGIC DESCRIPTION AND COMMENTS DIAMETER: 2.5" OD DEPTH TO \$ 2 ft bis LITHILOGIC DESCRIPTION AND COMMENTS DIAMETER: 2.5" OD DEPTH TO \$ 2 ft bis LITHILOGIC DESCRIPTION AND COMMENTS DIAMETER: 2.5" OD DEPTH TO \$ 2 ft bis LITHILOGIC DESCRIPTION OUT OF THE COMMENTS DIAMETER: 2.5" OD DEPTH TO \$ 2 ft bis LITHILOGIC DESCRIPTION OUT OF THE COMMENTS DIAMETER: 2.5" OD DEPTH TO \$ 2 ft bis LITHILOGIC DESCRIPTION OUT OF THE COMMENTS DIAMETER: 2.5" OD DEPTH TO \$ 2 ft bis LITHILOGIC DESCRIPTION OUT OF THE COMMENTS DIAMETER: 2.5" OD DEPTH TO \$ 2 ft bis LITHILOGIC DESCRIPTION OUT OF THE COMMENTS DIAMETER: 2.5" OD DEPTH TO \$ 2 ft bis LITHILOGIC DESCRIPTION OUT OF THE COMMENTS DIAMETER: 2.5" OD DEPTH TO \$ 2 ft bis LITHILOGIC DESCRIPTION OUT OF THE COMMENTS DIAMETER: 2.5" OD DEPTH TO \$ 2 ft bis LITHILOGIC DESCRIPTION OUT OF THE COMMENTS DIAMETER: 2.5" OD DIAMETER: 2.5" OD DEPTH TO \$ 2 ft bis LITHILOGIC DESCRIPTION OUT OF THE COMMENTS DIAMETER: 2.5" OD DIA	ORING ID: A902-SB14		WELL ID:	PIEZOMETER ID:	
SCREEN INTERVAL: ft bis DEPTH TO \$2 ft bis LITHILOGIC DESCRIPTION AND COMMENTS LIMESTONE, ooilitic, light brown to beige, sandy, coarse grained, some shell fragments, hard, moderately consolidated, moderately to highly weathered, intergranilular to moldic porosity.	ONTRACTOR: Precision S	ampling, Inc.	COMPLETION DATE: 06/24/98	LOGGED BY: R. Ofsanko	
HAND COMMENTS 11 II I	ETHOD: EnviroCore DPT		DIAMETER: 2.5" OD	TOTAL DEPTH: 6ft bis	
LIMESTONE, collitic, light brown to beige, sandy, coarse grained, some shell fragments, hard, moderately to nosolidated, moderately to highly weathered, intergraniular to moldic porosity.	OC ELEVATION: ft MSL		SCREEN INTERVAL: ft bis	DEPTH TO \$ 2 ft bis	
Coarse grained, some shell fragments, hard, moderately consolidated, moderately to highly weathered, intergraniular to moldic porosity.	DEPTH FT. LAB SAMPLE ID. SAMPLE	CORRECTED (Dpm)	THILOGIC DESCRIPTION AND COMMENTS	SYMBOL SYMBOL SOIL CLASS BLOW COUNTS	WELL DATA
		6 coarse grained, so moderately conso weathered, interg	ome shell fragments, hard, lidated, moderately to highly		
<u></u>					

BASE: NAS Key West			SITE ID: Truck Fill Stand	PROJECT NO. C	T0-0031 / N7586
ORING ID: A902-SB	15		WELL ID:	PIEZOMETER I);
CONTRACTOR: Precisi	on Sampling,	Inc.	COMPLETION DATE: 06/24/98	LOGGED BY: R.	Ofsanko
ETHOD: EnviroCore	OPT		DIAMETER: 2.5" OD	TOTAL DEPTH:	6ft bls
TOC ELEVATION: ft	MSL		SCREEN INTERVAL: ft bis	DEPTH TO ♀ 3	ft bis
DEPTH FT. LAB SAMPLE ID.	RECOVERY CORRECTED HEADSPACE	e tr	THILOGIC DESCRIPTION AND COMMENTS	LITHOLOGIC SYMBOL SOIL CLASS	BLOW COUNTS WELL DATA
¥	2	coarse grained, s moderately conso	ic, light brown to beige, sandy, ome shell fragments, hard, blidated, moderately to highly granlular to moldic porosity.		
5—				PO SECULOS SECUENTAS SECULOS SECULOS SECULOS SECULOS SECULOS SECULOS SECUENTAS	
10—					
15—					

BASE: NAS Key W	lest			SITE ID: Truck Fill Stand	PROJE	CT NO.	CTO-0031/	N7586
BORING ID: A902	-SB16			WELL ID:	PIEZO	METER	ID:	
CONTRACTOR: Pre	ecision San	npling,	Inc.	COMPLETION DATE: 06/24/98	LOGGE	D BY:	R. Ofsanko	
METHOD: EnviroCo	ore DPT			DIAMETER: 2.5" OD	TOTAL	. DEPT	H: 6ft bis	
TOC ELEVATION:	ft MSL			SCREEN INTERVAL: ft bis	DEPTH	1 то ұ	3 ft bls	
DEPTH FT. LAB SAMPLE ID.	SAMPLE	CORRECTED HEADSPACE	Ĝ LIT	THILOGIC DESCRIPTION AND COMMENTS	LITHOLOGIC SYMBOL	SOIL CLASS	BLOW	WELL DATA
5		1	coarse grained, so moderately conso	c, light brown to beige, sandy, ome shell fragments, hard, lidated, moderately to highly ranlular to moldic porosity.				
			·		HATT HATT OF THE STATE OF THE O			
0—								
15—			[PAGE 1 of A902SB16			Tetra	Tech NUS

BASE: NAS	Key West				SITE ID: Truck Fill Stand		PROJEC	CT NO.	CTO-0031	/ N7586	
BORING ID	A902-SB17	7			WELL ID:		PIEZO	METER	ID:		
CONTRACT	OR: Precisio	n Samp	oling, I	Inc.	COMPLETION DATE: 06/24	/98	LOGGE	D BY:	R. Ofsanko		
METHOD: E	nviroCore D	PT			DIAMETER: 2.5" OD		TOTAL	DEPTI	H: 6ft bis		
TOC ELEV	TION: ft h	MSL			SCREEN INTERVAL: ft bis		DEPTH	то ұ	3 ft bis		
DEPTH FT. LAB	SAMPLE	RECOVERY	CORRECTED HEADSPACE	E LITI	HILOGIC DESCRIPTION AND COMMENTS		LITHOLOGIC SYMBOL	SOIL CLASS	BLOW		WELL DATA
5—			35	LIMESTONE, colitic coarse grained, so moderately consoli	, light brown to beige, sandy me shell fragments, hard, dated, moderately to highly anlular to moldic porosity.	H.					
10-											
15—				·	PAGE 1 of A902SB17				Tetr	a Tech	NUS

	BASE: NAS Key W	est			SITE ID: Truck Fill Stand	PROJ	ECT NO	. CTO-0031 /	N7586		
METHOD: EnviroCore OPT TOC ELEVATION: 11 MSL SCREEN INTERVAL: 11 bis DEPTH TO \$ 3 ft bis TOTAL DEPTH: 81t bis DEPTH TO \$ 3 ft bis TOTAL DEPTH: 91t bis DEPTH TO \$ 3 ft bis TOTAL DEPTH: 91t bis TOTAL	BORING ID: A902-	SB18			WELL ID:	PIEZ	OMETER	R ID:			
TOC ELEVATION: It MSL SCREEN INTERVAL: It bis DEPTH TO \$ 3 It bis LITHILOGIC DESCRIPTION AND COMMENTS LITHILOGIC DESCR	CONTRACTOR: Pre	cision San	npling, :	Inc.	COMPLETION DATE: 06/24/9	8 LOG 0					
H. L.	METHOD: EnviroCo	re DPT			DIAMETER: 2.5" OD	TOTA	AL DEPT	H: 6ft bis			
LIMESTONE, colitic, light brown to beige, sandy, coarse grained, some shell fragments, hard, moderately consolidated, moderately to highly weathered, intergranular to moldic porosity.	TOC ELEVATION:	ft MSL			SCREEN INTERVAL: ft bis		гн то ұ	3 ft bls			
26 coarse grained, some shell fragments, hard, moderately to highly weathered, intergranhular to moldic porosity.	DEPTH FT. LAB SAMPLE ID.	SAMPLE	CORRECTED	E LIT		LITHOLOGIC SYMBOL	SOIL CLASS	BLOW COUNTS	WELL DATA		
				coarse grained, so moderately consoli	me shell fragments, hard, idated, moderately to highly						

ORING ID: A902- ONTRACTOR: Pred ETHOD: EnviroCor	SB19							
				WELL ID:	PIEZO	METER	ID:	
ETHOD: EnviroCor	ision Sam	pling, 1	Inc.	COMPLETION DATE: 06/24/98	LOGG	ED BY:	R. Ofsanko	
	e DPT			DIAMETER: 2.5" 00	TOTA			
OC ELEVATION:	ft MSL	<u> </u>		SCREEN INTERVAL: ft bis	DEPT	н то ұ	3 ft bls	
LEFT. FT. LAB SAMPLE ID.	SAMPLE RECOVERY	CORRECTED HEADSPACE	E LIT	HILOGIC DESCRIPTION AND COMMENTS	LITHOLOGIC SYMBOL	SOIL CLASS	BLOW	WELL DATA
<u></u>		3390	coarse grained, so moderately consoli weathered, intergr	c, light brown to beige, sandy, me shell fragments, hard, idated, moderately to highly anlular to moldic porosity.				
)								
5—								

BASE: NAS Key West				SITE ID: Truck Fill Stand	PROJECT NO. CTO-0031 / N7586			
BORING ID: A902-SB20 CONTRACTOR: Precision Sampling, Inc. METHOD: EnviroCore DPT		WELL ID: COMPLETION DATE: 06/24/98	PIEZOMETER I	PIEZOMETER ID:				
			LOGGED BY: R. Ofsanko					
		DIAMETER: 2.5" OD	TOTAL DEPTH:	TOTAL DEPTH: 6ft bis				
TOC ELEVATION: ft MSL				SCREEN INTERVAL: ft bis	DEPTH ТО ♀ 3	ft bls		
DEPTH FT. LAB SAMPLE ID.	SAMPLE	CORRECTED HEADSPACE	E LIT	HILOGIC DESCRIPTION AND COMMENTS	LITHOLOGIC SYMBOL SOIL CLASS	BLOW	WELL DATA	
¥		0 17	coarse grained, so moderately consoli	c, light brown to beige, sandy, me shell fragments, hard, idated, moderately to highly anlular to moldic porosity.	HART MAST IN THE			
5—								
-								
10—								
15—		•		AGE 1 of A902SB20		Tetra Tec	h NUS	

BAS	SE: NAS Key We	est			SITE ID: Truck Fill Stand	PROJECT	NO. CTO	-0031 / N7586	
90RING ID: A902-SB21 CONTRACTOR: Precision Sampling, Inc.		WELL ID:	PIEZOME	PIEZOMETER ID:					
COI	NTRACTOR: Pre	cision San	npling,	Inc.	COMPLETION DATE: 06/24/98	LOGGED	BY: R. Of	sanko	
ME	DNTRACTOR: Precision Sampling, Inc. ETHOD: EnviroCore DPT OC ELEVATION: ft MSL COURTECTED O DITALL TO THE PROPERTY OF THE	DIAMETER: 2.5" OD	TOTAL D	TOTAL DEPTH: 6ft bis					
TO	C ELEVATION:	ft MSL			SCREEN INTERVAL: ft bis	DEPTH T	0 ♀ 3 ft	bls	
		-							
ОЕРТН	FT. LAB SAMPLE ID.	SAMPLE	CORRECTED	E LIT	HILOGIC DESCRIPTION AND COMMENTS	LITHOLOGIC SYMBOL	SOIL CLASS	COUNTS	WELL DATA
5-				coarse grained, so moderately consol	c, light brown to beige, sandy, ome shell fragments, hard, idated, moderately to highly annular to moldic porosity.				
10-									
15-					PAGE 1 of A902SB21		···.	Tetra Tec	h NUS

BASE: NAS Key West				SITE ID: Truck Fill Stand	PROJECT NO.	PROJECT NO. CTO-0031 / N7586		
BORING ID: A902-SB22 CONTRACTOR: Precision Sampling, Inc. METHOD: EnviroCore DPT TOC ELEVATION: ft MSL				WELL ID: COMPLETION DATE: 06/24/98 DIAMETER: 2.5" OD	PIEZOMETER ID: LOGGED BY: R. Ofsanko			
			nc.					
					TOTAL DEPTH	TOTAL DEPTH: 6ft bis DEPTH TO \$\nabla\$ 3 ft bis		
				SCREEN INTERVAL: ft bis	DEPTH TO ♀ 3			
DEPTH FT. LAB SAMPLE ID.	SAMPLE	CORRECTED HEADSPACE	LITI	HILOGIC DESCRIPTION AND COMMENTS	LITHOLOGIC SYMBOL SOIL CLASS	BLOW COUNTS	WELL DATA	
5—		0	coarse grained, so moderately consoli	, light brown to beige, sandy, me shell fragments, hard, dated, moderately to highly anlular to moldic porosity.				
0—								
5—			P	AGE 1 of A902SB22		Tetra Tech NU	JS	

BASE: NAS Key	West			SITE ID: Truck Fill Stand	PROJECT NO. 0	CTO-0031 / N758	36
BORING ID: A90	02-SB23			WELL ID:	PIEZOMETER 1	D:	
CONTRACTOR:	recision Sa	ampling,	Inc.	COMPLETION DATE: 06/25/98	LOGGED BY: R.	Ofsanko	
METHOD: Enviro	Core DPT			DIAMETER: 2.5" OD	TOTAL DEPTH	6ft bis	
TOC ELEVATIO	N: ft MSL			SCREEN INTERVAL: ft bis	DEPTH TO ¥ 2	ft bis	
				·			
DEPTH FT, LAB SAMPLE ID.	SAMPLE	CORRECTED HEADSPACE	Ē LIT	THILOGIC DESCRIPTION AND COMMENTS	LITHOLOGIC SYMBOL SOIL CLASS	GOUNTS	WELL DATA
5—		3	coarse grained, so moderately conso	c, light brown to beige, sandy, ome shell fragments, hard, lidated, moderately to highly ranlular to moldic porosity.			
10							
15		1	l	PAGE 1 of A902SB23		Tetra Te	-b buic

BORING ID: A002-SB24 CONTRACTOR Precision Sampling, Inc. COMPLETION DATE: 06/25/98 LOGGED BY: R. Orsanko METHOD: EnviroCore DPT DIAMETER: 2:5" 00 TOTAL DEPTH: 6ft bis SCREEN INTERVAL: ft bis DEPTH TO 3 it bis LITHILOGIC DESCRIPTION AND COMMENTS LIMESTONE, oblitic, light brown to beige, sandy, coarse grained, some shell fragments, hard, moderately to highly weathered, intergrankiar to moldic porosity.	SE: NAS Key Wes	st			SITE ID: Truck Fill Stand	PROJECT	NO. CTO-0031	/ N7586			
DIAMETER: 2.5" OD TOTAL DEPTH: 6ft bis TOC ELEVATION: ft MSL SCREEN INTERVAL: ft bis DEPTH TO \$\frac{1}{2}\$ 3 ft bis LITHILOGIC DESCRIPTION AND COMMENTS LIMESTONE, oolitic, light brown to beige, sandy, coarse grained, some shell fragments, hard, moderately consolidated, moderately to highly weathered, intergraniular to moldic porosity.	RING ID: A902-S	6B24			WELL ID:	PIEZOME	PIEZOMETER ID:				
SCREEN INTERVAL: ft bis DEPTH TO \$\frac{1}{2}\$ 3 ft bis LITHILOGIC DESCRIPTION AND COMMENTS LIMESTONE, colitic, light brown to beige, sandy, coarse grained, some shell fragments, hard, moderately consolidated, moderately to highly weathered, intergraniular to moldic porosity.	NTRACTOR: Preci	ision Sam	pling,	Inc.	COMPLETION DATE: 06/25/98	LOGGED	BY: R. Ofsanko				
HADD IN THE BYTO THE	THOD: EnviroCore	e DPT		****	DIAMETER: 2.5" OD	TOTAL D	······································				
LIMESTONE, oolitic, light brown to beige, sandy, coarse grained, some shell fragments, hard, moderately consolidated, moderately to highly weathered, intergranlular to moldic porosity.	C ELEVATION:	ft MSL			SCREEN INTERVAL: ft bis	DEPTH 1					
coarse grained, some shell fragments, hard, moderately consolidated, moderately to highly weathered, intergranlular to moldic porosity.	FT. LAB SAMPLE ID.	SAMPLE	CORRECTED HEADSPACE	E LIT		LITHOLOGIC	SUL CLASS BLOW COUNTS	WELL DATA			
	- ¥			coarse grained, so moderately consoli	me shell fragments, hard, idated, moderately to highly						
	-			·							
	-										

BAS	SE: NAS Key We	≘st			SITE ID: Truck Fill Stand	PROJECT NO), CTO-0031 / N	17586
BOI	RING ID: A902-	SB25		1.00	WELL ID:	PIEZOMETE	R ID:	
COI	NTRACTOR: Pre	cision San	pling,	Inc.	COMPLETION DATE: 06/25/98	LOGGED BY:	R. Ofsanko	
ME.	THOD: EnviroCo	re DPT			DIAMETER: 2.5" OD	TOTAL DEP	TH: 6ft bls	
TO	C ELEVATION:	ft MSL			SCREEN INTERVAL: ft bis	DEPTH TO \$	3 ft bls	
ОЕРТН	FT. LAB SAMPLE ID.	SAMPLE	CORRECTED HEADSPACE	Ē LIT	HILOGIC DESCRIPTION AND COMMENTS	LITHOLOGIC SYMBOL SOIL CLASS	BLOW	WELL DATA
5-	T		5	LIMESTONE, oolitic coarse grained, so moderately consol	c, light brown to beige, sandy, ome shell fragments, hard, idated, moderately to highly raniular to moldic porosity.			
10-								
15.				·				
19.			•		PAGE 1 of A902SB25		Tetra	Tech NUS

BASE: NAS Key West	SITE ID: Truck Fill Stand	PROJECT NO. CTO-0031 / N758	6		
BORING ID: A902-SB26	WELL ID:	PIEZOMETER ID:			
CONTRACTOR: Precision Sampling, Inc.	COMPLETION DATE: 06/25/98	LOGGED BY: R. Ofsanko			
METHOD: EnviroCore DPT	DIAMETER: 2.5" OB	TOTAL DEPTH: 6ft bis			
TOC ELEVATION: ft MSL	SCREEN INTERVAL: ft bis	DEPTH TO ¥ 3 ft bis			
DEPTH FT. LAB SAMPLE ID. SAMPLE RECOVERY CORRECTED HEADSPACE (ppm)	LITHILOGIC DESCRIPTION AND COMMENTS	LITHOLOGIC SYMBOL SOIL CLASS BLOW COUNTS	WELL DATA		
00W88Á8p8âppÁ 12 coarse grain moderately d	oolitic, light brown to beige, sandy, led, some shell fragments, hard, consolidated, moderately to highly intergraniular to moldic porosity.				
10					
45					
15—	PAGE 1 of A902SB26	Tetra Tec			

SAMPLE ID: VANDE ELECAVERY CORRECTED HEADSPACE (ppm)	DIAMETER: 2.5" OD SCREEN INTERVAL: ft bis LITHILOGIC DESCRIPTION	PIEZOMETER ID: LOGGED BY: R. Ofsanko TOTAL DEPTH: 6ft bis DEPTH TO ¥ 3 ft bis	
THOD: EnviroCore DPT C ELEVATION: ft MSL	DIAMETER: 2.5" OD SCREEN INTERVAL: ft bis LITHILOGIC DESCRIPTION	TOTAL DEPTH: 6ft bis DEPTH TO ¥ 3 ft bis	
C ELEVATION: ft MSL	SCREEN INTERVAL: ft bis	DEPTH TO ¥ 3 ft bis	
	LITHILOGIC DESCRIPTION		
FT. LAB AMPLE ID. SAMPLE ECOVERY ORRECTED (ppm)		SS SS	
w # 5 ±	AND COMMENTS	SYMBOL SYMBOL SOIL CLASS BLOW COUNTS	WELL DATA
L	MESTONE, oolitic, light brown to beige, sandy, arse grained, some shell fragments, hard, derately consolidated, moderately to highly athered, intergrantular to moldic porosity.		

(T. 1)

BORING 1D: A902—SE29 CONTRACTOR: Precision Sempling, Inc. COMPLETION DATE: 08/25/98 LIGGED BY: R. Ofsanko METHOD: Envirocore DPT DIAMETER: 25° 00 TOTAL DEPTH: 6ft bis TOC ELEVATION: ft MSL LITHLOGIC DESCRIPTION AND COMMENTS LITHLOGIC DES	BASE: NAS Key We	st			SITE ID: Truck Fill Stand	PROJECT	NO. CTO	-0031 / N	17586
DIAMETER: 2.5" OD TOTAL DEPTH: 6ft bis TOC ELEVATION: ft MSL SCREEN INTERVAL: ft bis DEPTH TO \$\frac{1}{2}\$ 3 ft bis LITHILOGIC DESCRIPTION AND COMMENTS DIAMETER: 2.5" OD DEPTH TO \$\frac{1}{2}\$ 3 ft bis LITHILOGIC DESCRIPTION AND COMMENTS DIAMETER: 2.5" OD DEPTH TO \$\frac{1}{2}\$ 3 ft bis LITHILOGIC DESCRIPTION AND COMMENTS DIAMETER: 2.5" OD DEPTH TO \$\frac{1}{2}\$ 3 ft bis LITHILOGIC DESCRIPTION OUT OF THE PARTY OF THE PAR	BORING ID: A902-S	SB28			WELL ID:	PIEZOMETER ID:			
TOC ELEVATION: ft MSL BY S LITHILOGIC DESCRIPTION AND COMMENTS AND CO	CONTRACTOR: Prec	ision Sam	pling, Inc.		COMPLETION DATE: 06/25/98	LOGGED	BY: R. Of	sanko	
Had and the second of the seco	METHOD: EnviroCor	e DPT			DIAMETER: 2.5" OD	TOTAL D	EPTH: 6	ft bls	10 11 11 11 11 11 11 11 11 11 11 11 11 1
LIMESTONE, colitic, light brown to beige, sandy, coarse grained, some shell fragments, hard, moderately consolidated, mod	TOC ELEVATION:	ft MSL			SCREEN INTERVAL: ft bis	DEPTH T	DEPTH TO ¥ 3 ft bis		
coarse grained, some shell fragments, hard, moderately consolidated, moderately to highly weathered, intergranlular to moldic porosity.	DEPTH FT. LAB SAMPLE ID.	SAMPLE	CORRECTED HEADSPACE (ppm)	LIT		LITHOLOGIC SYMBOL	SOIL CLASS	COUNTS	WELL DATA
			LIMES coarse modera weathe	grained, so ely consol	ome shell fragments, hard, idated, moderately to highly				

BASE: NAS Key West		SITE ID: Truck Fill Stand	PROJECT NO. CTO-0031	/ N7586
BORING ID: A902-SB29	9	WELL ID:	PIEZOMETER ID:	
CONTRACTOR: Precision	Sampling, Inc.	COMPLETION DATE: 06/25/98	LOGGED BY: R. Ofsanko	
METHOD: EnviroCore DP	PT	DIAMETER: 2.5" OD	TOTAL DEPTH: 6ft bis	
TOC ELEVATION: ft M	SL	SCREEN INTERVAL: ft bis	DEPTH TO ♀ 3 ft bis	
DEPTH FT. LAB SAMPLE ID.	RECOVERY CORRECTED HEADSPACE (ppm)	THILOGIC DESCRIPTION AND COMMENTS	SYMBOL SYMBOL SOIL CLASS BLOW COUNTS	WELL DATA
5—	o coarse grained, s	ic, light brown to beige, sandy, some shell fragments, hard, blidated, moderately to highly granlular to moldic porosity.		
10—				
15—		PAGE 1 of A902SB29	Tet	ra Tech NUS

BASE: NAS Key West	SITE ID: Truck Fill Stand	PROJECT NO. CTO-0	031 / N7586	garen.
BORING ID: A902-SB30	WELL ID:	PIEZOMETER ID:		
CONTRACTOR: Precision Sampling, Inc.	COMPLETION DATE: 06/25/98	LOGGED BY: R. Ofser	nko	
METHOD: EnviroCore DPT	DIAMETER: 2.5" OD	TOTAL DEPTH: 6ft I	ols	
TOC ELEVATION: ft MSL	SCREEN INTERVAL: ft bis	DEPTH TO ¥ 3 ft bis	,	
		······································		
DEPTH FT. LAB SAMPLE ID. SAMPLE RECOVERY CORRECTED HEADSPACE (ppm)	THILOGIC DESCRIPTION AND COMMENTS	LITHOLOGIC SYMBOL SOIL CLASS BLOW COUNTS	WELL DATA	
LIMESTONE, colitic coarse grained, so moderately conso	c, light brown to beige, sandy, ome shell fragments, hard, lidated, moderately to highly ranlular to moldic porosity.	I NOT HOLD TO SEE THE		
15—	PAGE 1 of A902SB30		Tetra Tech NUS	

BASE: NAS	Key West	 - —, -			SITE ID: Truck Fill S	itand	PROJE	CT NO.	CTO-0031 / 1	N7586
BORING ID					WELL ID:		PIEZO	METER	ID:	
CONTRACT	OR: Precis	ion Sam	pling,	Inc.	COMPLETION DATE:	06/25/98	LOGGED BY: R. Ofsanko TOTAL DEPTH: 6ft bis			
METHOD: E	nviroCore	DPT			DIAMETER: 2.5" OD					
TOC ELEV	TION: ft	MSL			SCREEN INTERVAL:	ft bis	DEPTH	1 TO ¥	3 ft bis	
DEPTH FT. LAB		SAMPLE RECOVERY	CORRECTED HEADSPACE	E LITI	HILOGIC DESCRIPTION AND COMMENTS		LITHOLOGIC SYMBOL	SOIL CLASS	BLOW	WELL DATA
₹			30 2955	coarse grained, so moderately consoli	i, light brown to beige me shell fragments, ha dated, moderately to anlular to moldic poros	ard, highly				
5							SC 150 150 150 150 150 150 150 150 150 150			
10—										
15					PAGE 1 of A902SE					Tech NUS

BASE: NAS Key We	est			SITE ID: Truck Fill Stand	PF	OJECT NO.	CTO-0031 / N7	586	
BORING ID: A902-	SB32	·····		WELL ID:	PI	EZOMETER	ID:		
CONTRACTOR: Pred	······································	oling,	Inc.	COMPLETION DATE: 06/25	5/98 LC	LOGGED BY: R. Ofsanko			
METHOD: EnviroCo			***	DIAMETER: 2.5" OD	TO	OTAL DEPTI	H: 6ft bls		
TOC ELEVATION:	· "			SCREEN INTERVAL: ft bis	s Di	ЕРТН ТО ♀	3 ft bls		
TOO ELEVATION.	TENOL					•			
DEPTH FT. LAB SAMPLE ID.	SAMPLE	CORRECTED HEADSPACE	Ē LITI	HILOGIC DESCRIPTION AND COMMENTS	LITHOLOGIC	SYMBOL SOIL CLASS	BLOW	WELL DATA	
5		5 25	coarse grained, so moderately consoli	c, light brown to beige, sand me shell fragments, hard, idated, moderately to highly anlular to moldic porosity.					
10—									
15—			<u> </u>	PAGE 1 of A902SB32			Tetra T	ech NUS	

BASE: NAS Key Wes			SITE ID: Truck Fill Stand	PROJECT NO.	CTO-0031 / N7586	
30RING ID: A902-5			WELL ID:	PIEZOMETER :	ID:	
CONTRACTOR: Prec	ision Sampling	, Inc.	COMPLETION DATE: 06/25/98	LOGGED BY: R	. Ofsanko	
METHOD: EnviroCore	e DPT		DIAMETER: 2.5" OD	TOTAL DEPTH	: 6ft bls	
TOC ELEVATION:	ft MSL		SCREEN INTERVAL: ft bis	DEPTH TO \$ 3	ft bis	
DEPTH FT. LAB SAMPLE ID.	SAMPLE RECOVERY CORRECTED HFANSPACE	LIT	HILOGIC DESCRIPTION AND COMMENTS	LITHOLOGIC SYMBOL SOIL CLASS	BLOW	WELL DATA
5	2880	coarse grained, so moderately consol weathered, intergr	c, light brown to beige, sandy, ome shell fragments, hard, idated, moderately to highly anlular to moldic porosity.			
10						

BASE: NAS Key W	est		SITE ID: Truck Fill Stand	PROJECT NO. CT	TO-0031 / N7586	
BORING ID: A902	-SB34		WELL ID:	PIEZOMETER ID	l:	
CONTRACTOR: Pre	cision San	npling, Inc.	COMPLETION DATE: 06/25/98	LOGGED BY: R. (Ofsanko	
METHOD: EnviroCo	ore DPT		DIAMETER: 2.5" OD	TOTAL DEPTH: 6ft bis		
TOC ELEVATION:	ft MSL		SCREEN INTERVAL: ft bis	DEPTH TO ¥ 3 f	t bls	
DEPTH FT. LAB SAMPLE ID.	SAMPLE	CORRECTED HEADSPACE (ppm)	ITHILOGIC DESCRIPTION AND COMMENTS	SYMBOL SYMBOL SOIL CLASS	BLOW COUNTS WELL DATA	
¥		o coarse grained, moderately cons	tic, light brown to beige, sandy, some shell fragments, hard, olidated, moderately to highly granlular to moldic porosity.	HERE HERE HERE HERE HERE HERE HERE HERE		
5—				OR STORE SOCIONAL SOCIAL SOCIA		
10—						
15	1	1 1	PAGE 1 of A902SB34		Tetra Tech NUS	

BASE: NAS Key We	est			SITE ID: Truck Fill Stand	PROJE	CT NO.	CTO-0031 /	N7586
ORING ID: A902-	SB35			WELL ID:	PIEZO	METER	ID:	
CONTRACTOR: Pred	cision Sam	pling,	Inc.	COMPLETION DATE: 06/25/98	LOGGE	D BY:	R. Ofsanko	
METHOD: EnviroCo	re DPT			DIAMETER: 2.5" OD	TOTAL	DEPTI	H: 6ft bis	
TOC ELEVATION:	ft MSL			SCREEN INTERVAL: ft bis	DEPTH	TO ₹	3 ft bls	
DEPTH FT. LAB SAMPLE ID.	SAMPLE	CORRECTED HEADSPACE	(E LIT	HILOGIC DESCRIPTION AND COMMENTS	LITHOLOGIC SYMBOL	SOIL CLASS	BLOW	WELL DATA
5—		0	coarse grained, so moderately consoli	c, light brown to beige, sandy, ome shell fragments, hard, idated, moderately to highly annular to moldic porosity.				
10—								
15—								

BASE: NAS Key W	est			SITE ID: Truci	k Fill Stand	PROJECT NO	. CTO-0031 /	N7586		
BORING ID: A902-	-SB36			WELL ID:	:	PIEZOMETE	R ID:			
CONTRACTOR: Pre	cision Sam	pling,	Inc.	COMPLETION	DATE: 06/25/98	LOGGED BY:	R. Ofsanko			
METHOD: EnviroCo	re DPT			DIAMETER: 2.5	DIAMETER: 2.5" OD TOT.		'H: 6ft bis			
TOC ELEVATION:	ft MSL			SCREEN INTE	RVAL: ft bis	DEPTH TO \$	DEPTH TO ♀ 3 ft bis			
DEPTH FT. LAB SAMPLE ID.	SAMPLE	CORRECTED HEADSPACE	Ē LIT	HILOGIC DESCRIF AND COMMENTS		LITHOLOGIC SYMBOL SOIL CLASS	BLOW	WELL DATA		
- ¥		2	LIMESTONE, oolitic coarse grained, so moderately consol weathered, intergr	ome shell fragmei idated, moderate	nts, hard, ely to highly					
1					•					
10—										
15—				PAGE 1 of A9	02SB36		Tetra	a Tech NU	IS	

	-SR37		WELL ID:	PIEZOMETER ID:	
ORING ID: A902 ONTRACTOR: Pre		molina			
		mithinisg,	TOTAL DEPTH: 6ft bis		
ETHOD: EnviroCo			DIAMETER: 2.5" OD		
OC ELEVATION:	TT MSL		SCREEN INTERVAL: ft bis	DEPTH TO \$ 3 ft bis	
LAB SAMPLE ID.	SAMPLE	CORRECTED	E LITHILOGIC DESCRIPTION AND COMMENTS	LITHOLOGIC SYMBOL SOTL CLASS BLOW COUNTS	
		1	LIMESTONE, oolitic, light brown to beige, sandy, coarse grained, some shell fragments, hard, moderately consolidated, moderately to highly weathered, intergranlular to moldic porosity.		
↓		2		CONTROL STOP CONTROL STOP CO	
0					

BASE: NAS Key We	st		SITE ID: Truck Fill Stand	PROJECT NO. CTO-0	0031 / N7586		
BORING ID: A902-	SB38		WELL ID:	PIEZOMETER ID:			
CONTRACTOR: Pred	ision Sam	pling, Inc.	COMPLETION DATE: 06/26/98	LOGGED BY: R. Ofsanko			
METHOD: EnviroCor	e DPT	DIAMETER: 2.5" OD		TOTAL DEPTH: 6ft bis			
TOC ELEVATION:	ft MSL		SCREEN INTERVAL: ft bis	DEPTH TO \$ 3 ft bi	3		
DEPTH FT. LAB SAMPLE ID.	SAMPLE	CORRECTED HEADSPACE (ppm)	LITHILOGIC DESCRIPTION AND COMMENTS	LITHOLOGIC SYMBOL SOIL CLASS BLOW BLOW	WEI DATA		
5—		LIMESTONE, or coarse grained moderately col	plitic, light brown to beige, sandy, d, some shell fragments, hard, insolidated, moderately to highly ergranlular to moldic porosity.				
10							
15							

BASE	: NAS Key We	st			SITE ID: Truck	c Fill Stand	PROJE	CT NO.	CTO-0031 /	N7586	
BORI	NG ID: A902-	SB39			WELL ID:		PIEZO	METER	ID:	· · · · · · · · · · · · · · · · · · ·	
	TRACTOR: Pred		mpling,	Inc.	COMPLETION	DATE: 06/26/98	LOGGE	D BY:	R. Ofsanko	. ,	
	HOD: EnviroCo				DIAMETER: 2.5	5" OD	TOTAL	TOTAL DEPTH: 6ft bis			
	ELEVATION:				SCREEN INTE	RVAL: ft bis	DEPTH	H TO ₹	3 ft bls		
								<u> </u>		· · · · · · · · · · · · · · · · · · ·	
DEPTH FT	LAB SAMPLE ID.	SAMPLE	CORRECTED	Ê LIT	HILOGIC DESCRIP AND COMMENTS	TION	LITHOLOGIC SYMBOL	SOIL CLASS	BLOW		WELL DATA
	¥		0	LIMESTONE, oolitic coarse grained, so moderately consol weathered, intergr	ome shell fragmer idated, moderate	nts, hard, ely to highly					
5											
10-											
	-										
15-					PAGE 1 of A9	02SB39			Tetra	a Tech	NUS

BASE: NAS Key We	est		SITE ID: Truck Fill Stand	PROJECT NO.	CTO-0031 / N7586	, see the second se
BORING ID: A902-			WELL ID:	PIEZOMETER	ID:	·
CONTRACTOR: Pre		ing, Inc.	COMPLETION DATE: 06/26/98	LOGGED BY:	R. Ofsanko	
METHOD: EnviroCo		,	DIAMETER: 2.5" OD	TOTAL DEPT	TOTAL DEPTH: 6ft bis	
TOC ELEVATION:			SCREEN INTERVAL: ft bis	DEPTH TO ₽	3 ft bls	
TOO ELLTATION	101100					
DEPTH FT. LAB SAMPLE ID.	SAMPLE RECOVERY CORRECTED	CONNECTIED (PDM)	THILOGIC DESCRIPTION AND COMMENTS	LITHOLOGIC SYMBOL SOIL CLASS	BLOW	WELL DATA
- ¥		coarse grained, so moderately consol	ic, light brown to beige, sandy, come shell fragments, hard, blidated, moderately to highly granlular to moldic porosity.			
5						
10						
.15—			PAGE 1 of A902SB40		Tetra Tech	NUS

ORING ID: A902-	SR41		WELL ID:	PIEZOME	TER ID:	ER ID:		
		ion Drilling, Inc. COMPLETION DATE: 08/25/98 LOGGED BY: P. Calligan						
ETHOD: GeoProb								
OC ELEVATION:			SCREEN INTERVAL: ft bis		DEPTH TO ♀ 3 ft bis			
OC ELEVATION.	TT MOL		GORLEN INTERVAL. 11 515	DEI III IX	3 4 5 11 15 15			
DEPTH FT. LAB SAMPLE ID.	SAMPLE RECOVERY CORRECTED	HEADSPACE (ppm)	LITHILOGIC DESCRIPTION AND COMMENTS	LITHOLOGIC SYMBOL SOIL CLASS	BLOW	WELL DATA		
\$902SB4103	X	coarse grained moderately con	litic, light brown to beige, sandy, , some shell fragments, hard, solidated, moderately to highly rgranlular to moldic porosity.					
0								

BASE: NAS Key West		SITE ID: Truck Fill Stand	PROJECT NO. CTO-003	B1 / N7586		
ORING ID: A902-SB42		WELL ID:	PIEZOMETER ID:			
CONTRACTOR: Precision Dr	illing, Inc.	COMPLETION DATE: 08/25/98	LOGGED BY: P. Calligar	1		
METHOD: GeoProbe DPT		DIAMETER: 2.5" OD	TOTAL DEPTH: 4ft bis			
OC ELEVATION: ft MSL		SCREEN INTERVAL: ft bis	DEPTH TO ¥ 3 ft bis			
DEPTH FT. LAB SAMPLE ID. SAMPLE	CORRECTED HEADSPACE (ppm)	THILOGIC DESCRIPTION AND COMMENTS	LITHOLOGIC SYMBOL SOIL CLASS BLOW COUNTS	WELL DATA		
★902SB4202 ▼	coarse grained, s	ic, light brown to beige, sandy, ome shell fragments, hard, lidated, moderately to highly granlular to moldic porosity.				
0						
15—	, 1	PAGE 1 of A902SB42	Te	tra Tech NUS		

BASE: NAS Key	West		SITE ID: Truck Fill Stand	PROJECT NO. CT	10-0031 / N7586
ORING ID: A9	02-SB43		WELL ID:	PIEZOMETER ID):
CONTRACTOR:	Precision Dr	rilling, Inc.	COMPLETION DATE: 08/25/98	LOGGED BY: P. (Calligan
(ETHOD: GeoP	obe DPT		DIAMETER: 2.5" OD	TOTAL DEPTH:	4ft bis
OC ELEVATIO	N: ft MSL		SCREEN INTERVAL: ft bis	DEPTH TO ¥ 3 f	it bls
DEPTH FT. LAB SAMPLE ID.	SAMPLE	CORRECTED HEADSPACE (ppm)	LITHILOGIC DESCRIPTION AND COMMENTS	LITHOLOGIC SYMBOL SOIL CLASS	BLOW COUNTS
\$902SB43	02	coarse grain	oolitic, light brown to beige, sandy, ned, some shell fragments, hard, consolidated, moderately to highly intergraniular to moldic porosity.		
10—					
15—					

APPENDIX E

WELL COMPLETION LOGS

BASE: NAS Key West	SITE ID: Truck Fill Stand	PROJECT NO. CTO-0031 / N7586
BORING ID: A902-P1	WELL ID:	PIEZOMETER ID: A902-P1
CONTRACTOR: Precision Sampling, Inc.	COMPLETION DATE: 06/26/98	LOGGED BY: R. Ofsanko
METHOD: EnviroCore DPT	DIAMETER: 0.75" ID	TOTAL DEPTH: 12ft bis
TOC ELEVATION: 3.41 ft MSL	SCREEN INTERVAL: 2 - 12ft bis	DEPTH TO ¥ 2.33 ft bis
DEPTH FT. LAB SAMPLE ID. SAMPLE RECOVERY CORRECTED HEADSPACE (ppm)	LITHILOGIC DESCRIPTION AND COMMENTS	LITHOLOGIC SYMBOL SOIL CLASS BLOW COUNTS
LIMES coars	ONE: oolitic, light brown to beige, sandy, grained, some shell fragments, hard, ely consolidated, moderately to highly ed, intergranular and moldic porosity.	
10—		
		THE PROPERTY OF THE PROPERTY O
15—	PAGE 1 of A902P1	Tetra Tech NUS

LIMESTONE: oolitic, coarse grained, son moderately consolic	WELL ID: COMPLETION DATE: 06/26/98 DIAMETER: 0.75" ID SCREEN INTERVAL: 2 - 12ft bis HILOGIC DESCRIPTION AND COMMENTS , light brown to beige, sandy, me shell fragments, hard,	PIEZOMETER LOGGED BY: TOTAL DEPTH DEPTH TO \$ SOULCIANS TOTAL DEPTH SOULCIANS TOTAL DEPTH SOULCIANS TOTAL DEPTH TOTA	R. Ofsanko H: 12ft bls	WELL DATA
AETHOD: EnviroCore DPT FOC ELEVATION: 4.24 ft MSL LITH COBBE CARE SAMPLE ID SAMPLE ID LIMESTONE: colitic, coarse grained, som moderately consolice.	DIAMETER: 0.75" ID SCREEN INTERVAL: 2 - 12ft bis HILOGIC DESCRIPTION AND COMMENTS I, light brown to beige, sandy, me shell fragments, hard,	TOTAL DEPTI	H: 12ft bis 3.59 ft bis	LL DATA
COCELEVATION: 4.24 ft MSL SAMPLE ID. SAMPLE ID. CORRECTED COBRECTED LIMESTONE: oolitic, coarse grained, som moderately consolice moderately consolice.	SCREEN INTERVAL: 2 - 12ft bis HILOGIC DESCRIPTION AND COMMENTS , light brown to beige, sandy, me shell fragments, hard,	ДЕРТН ТО ♀	3.59 ft bls	LL DATA
COARECTED HEADSPACE (Ppm) LAB (Ppm) LA	HILOGIC DESCRIPTION AND COMMENTS , light brown to beige, sandy, me shell fragments, hard,			LL DATA
LIMESTONE: oolitic, coarse grained, son moderately consolic	and comments ; light brown to beige, sandy, me shell fragments, hard,	LITHOLOGIC SYMBOL SOIL CLASS	BLOW	LL DATA
coarse grained, som	me shell fragments, hard,	1 Mar. 1451 F 190 1500 1500 1 1615 1515 F		Ř
5	dated, moderately to highly anular and moldic porosity.			<u> </u>

BASE: NAS Key Wes	st			SITE ID: Truck Fill Stand	PROJECT NO.	CTO-0031 / N	17586
BORING ID: A902-P	'3			WELL ID:	PIEZOMETER	ID: A902-P3	
CONTRACTOR: Preci	ision Sam	pling,	Inc.	COMPLETION DATE: 06/26/98	LOGGED BY:	R. Ofsanko	
METHOD: EnviroCore	e DPT			DIAMETER: 0.75" ID	TOTAL DEPT	H: 12ft bls	
TOC ELEVATION: 4	1.07 ft MS	SL		SCREEN INTERVAL: 2 - 12ft bis	DEPTH TO \$	2.96 ft bls	
DEPTH FT. LAB SAMPLE ID.	SAMPLE	CORRECTED HEADSPACE	E LITI	HILOGIC DESCRIPTION AND COMMENTS	LITHOLOGIC SYMBOL SOIL CLASS	BLOW	WELL DATA
5—			coarse grained, so moderately consoli	i, light brown to beige, sandy, me shell fragments, hard, dated, moderately to highly anular and moldic porosity.	참 참 참 라마 라마 라마 라마 라마 라마 라마 라마 라마 라마 라마 라마 라마		
						<u>.</u>	
15—1	ı 1	l.	1	PAGE 1 of A902P3		Tetra	Tech NUS

BASE: NAS Key West					SITE ID: Truck Fill Stand	PROJECT NO. CTO-0031 / N7586				
BORI	NG ID: A902-	-MWO1			WELL ID: A902-MW01	PIEZOMETER ID:				
CONTRACTOR: Precision Drilling, Inc. METHOD: Diedrich D-120 TOC ELEVATION: 4.41 ft MSL					COMPLETION DATE: 08/26/98	LOGGED BY:	LOGGED BY: P. Calligan			
					DIAMETER: 2" ID	TOTAL DEPTI	H: 12ft bls			
					SCREEN INTERVAL: 2 - 12ft bis	DEPTH TO \$	2.46 ft bis			
OEPTH FT.	LAB SAMPLE ID.	SAMPLE	CORRECTED HEADSPACE	Ê LIT	HILOGIC DESCRIPTION AND COMMENTS	LITHOLOGIC SYMBOL SOIL CLASS	BLOW	WELL DATA		
5	¥			coarse grained, so moderately consol	c, light brown to beige, sandy, ome shell fragments, hard, idated, moderately to highly anular and moldic porosity.					
15										
		· I	1	•	PAGE 1 of A902MW01		Tetra T	ech NUS		

	- W	SITE ID: Truck Fill Stand	PROJECT NO. CTO-0031 / N7586 PIEZOMETER ID:			
BORING ID: A902-MW02		WELL ID: A902-MW02				
CONTRACTOR: Precision E	Drilling, Inc.	COMPLETION DATE: 08/26/98	LOGGED BY: P. Calligan			
METHOD: Diedrich D-120		DIAMETER: 2" 10	TOTAL DEPTH: 12ft bis			
TOC ELEVATION: 2.98 ft	t MSL	SCREEN INTERVAL: 2 ~ 12ft bis	DEPTH TO ¥ 2.08 ft bis			
DEPTH FT. LAB SAMPLE ID. SAMPLE	RECOVERY CORRECTED HEADSPACE (ppm)	ITHILOGIC DESCRIPTION AND COMMENTS	LITHOLOGIC SYMBOL SOIL CLASS BLOW COUNTS	WELL DATA		
5—	LIMESTONE: ooli coarse grained, moderately cons	tic, light brown to beige, sandy, some shell fragments, hard, olidated, moderately to highly granular and moldic porosity.				
15						

BASE: NAS Key I	west		SITE ID: Truck Fill Stand	PROJECT NO. CTO-0031 / N7586 PIEZOMETER ID:			
BORING ID: A902	2-MW03		WELL ID: A902-MW03				
CONTRACTOR: Pr	ecision Dri	lling, Inc.	COMPLETION DATE: 08/26/98	LOGGED BY: P.	Calligan		
METHOD: Diedrich	n D-120		DIAMETER: 2" ID	TOTAL DEPTH:	12ft bis		
TOC ELEVATION	4.25 ft M	1SL	SCREEN INTERVAL: 2 - 12ft bis	DEPTH TO ¥ 2.	23 ft bis		
DEPTH FT. LAB SAMPLE ID.	SAMPLE	CORRECTED HEADSPACE (ppm)	LITHILOGIC DESCRIPTION AND COMMENTS	LITHOLOGIC SYMBOL SOIL CLASS	BLOW COUNTS		
5—		coarse grained	olitic, light brown to beige, sandy, d, some shell fragments, hard, nsolidated, moderately to highly ergranular and moldic porosity.				
15							
			PAGE 1 of A902MW03		Tetra Tech NUS		

BAS	E: NAS Key We	est			SITE ID: Truck Fill Stand	PROJE	PROJECT NO. CTO-0031 / N7586			
BORI	BORING ID: A902-MW04 CONTRACTOR: Precision Drilling, Inc.				WELL ID: A902-MW04	PIEZO	PIEZOMETER ID: LOGGED BY: P. Calligan			
CON					COMPLETION DATE: 08/26/98	LOGGI				
METI	HOD: Diedrich	D-120			DIAMETER: 2" ID	TOTA	L DEPT	H: 12ft bis		·
TOC	ELEVATION:	2.63 ft MS	SL		SCREEN INTERVAL: 2 - 12ft bis	DEPTI	ч то ұ	0.65 ft bls		
DEPTH	LAB SAMPLE ID.	SAMPLE RECOVERY	CORRECTED	(E LIT	HILOGIC DESCRIPTION AND COMMENTS	LITHOLOGIC	SOIL CLASS	BLOW		WELL DATA
5				coarse grained, so moderately consol	c, light brown to beige, sandy, ome shell fragments, hard, idated, moderately to highly ranular and moldic porosity.					
15-										
				1	PAGE 1 of A902MW04			Tetra	Tech	NUS

BASE: NAS Key West BORING ID: A902-MW05 CONTRACTOR: Precision Drilling, Inc. METHOD: Diedrich D-120					SITE ID: Truck Fill Stand	PROJECT NO.	CTO-0031 / 1	N7586	
					WELL ID: A902-MW05	PIEZOMETER ID:			
					COMPLETION DATE: 08/26/98	LOGGED BY: F	P. Calligan		
					DIAMETER: 2" ID	TOTAL DEPTH	1: 12ft bls		
TOC E	ELEVATION:	4.46 ft M	SL		SCREEN INTERVAL: 2 - 12ft bis	ОЕРТН ТО ♀	2.40 ft bis	· · · · · · · · · · · · · · · · · · ·	
ОЕРТН FT.	LAB SAMPLE ID.	SAMPLE	CORRECTED HEADSPACE	E LIT	HILOGIC DESCRIPTION AND COMMENTS	LITHOLOGIC SYMBOL SOIL CLASS	BLOW COUNTS	WELL DATA	
5	¥			LIMESTONE: oolitic coarse grained, so moderately consol	c, light brown to beige, sandy, ome shell fragments, hard, idated, moderately to highly ranular and moldic porosity.				
-									
				F	PAGE 1 of A902MW05		Tetra	Tech NUS	

BAS	E: NAS Key W	est			SITE ID: Truck Fill Stand	PROJECT	NO. CTO-0031 / N	17586		
BOR	ING ID: A902-	-MW06	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1		WELL ID: A902-MW06		PIEZOMETER ID:			
CONTRACTOR: Precision Drilling, Inc. METHOD: Diedrich D-120					COMPLETION DATE: 08/26/98		LOGGED BY: P. Calligan TOTAL DEPTH: 12ft bls			
					DIAMETER: 2" ID	TOTAL D				
TOC	ELEVATION:	3.99 ft M	SL		SCREEN INTERVAL: 2 - 12ft bis	DEPTH T	0 ¥ 1.91 ft bls			
DEPTH ET	LAB SAMPLE ID.	SAMPLE	CORRECTED HEADSPACE	Ê LIT	HILOGIC DESCRIPTION AND COMMENTS	LITHOLOGIC SYMBOL	BLOW COUNTS	WELL DATA		
10—	\			coarse grained, so moderately consoli	c, light brown to beige, sandy, me shell fragments, hard, idated, moderately to highly anular and moldic porosity.					
				<u>. </u>	AGE 1 of A902MW06		Tetra	Tech NUS		

BASE: NAS Key West					SITE ID: Truck Fill Stand	PROJE	PROJECT NO. CTO-0031 / N7586				
BORING ID:	A902-MW0	7			WELL ID: A902-MW07	PIEZO	PIEZOMETER ID:				
CONTRACTOR: Precision Drilling, Inc. METHOD: Diedrich D-120 TOC ELEVATION: 4.22 ft MSL					COMPLETION DATE: 08/26/98	LOGGI	ED BY:	P. Calligan			
					DIAMETER: 2" ID	TOTA	L DEPT	H: 12ft bls			
					SCREEN INTERVAL: 2 - 12ft bis	DEPTI	н то ұ	2.07 ft bis			
DEPTH FT. LAB	SAMPLE	RECOVERY	CORRECTED	Ē LIT	HILOGIC DESCRIPTION AND COMMENTS	LITHOLOGIC	SOIL CLASS	BLOW	WELL DATA		
5— 10—				coarse grained, so moderately consol	c, light brown to beige, sandy, ome shell fragments, hard, idated, moderately to highly ranular and moldic porosity.						
<u> </u>				F	PAGE 1 of A902MWO7			Tetra Tech	NUS		

BASE: NA	AS Key We	st			SITE ID: Truck Fill Stand	PROJECT NO), CTO-0031 / N7586	·		
BORING	BORING ID: A902-MWD8 CONTRACTOR: Precision Drilling, Inc.				WELL ID: A902-MWD8		PIEZOMETER ID:			
CONTRAC					COMPLETION DATE: 08/25/98		LOGGED BY: P. Calligan			
METHOD:	Diedrich (D-120		· · · · · · · · · · · · · · · · · · ·	DIAMETER: 2" ID		TH: 35ft bis			
TOC ELE	VATION:	4.11 ft M	I SL		SCREEN INTERVAL: 30 - 35ft	·				
	****						2.00 11 015			
DEPTH FT. LAB	SAMPLE ID	SAMPLE	CORRECTED	E LIT	HILOGIC DESCRIPTION AND COMMENTS	LITHOLOGIC SYMBOL SOIL CLASS	BLOW	WELL DATA		
			5	coarse grained, so	, light brown to beige, sandy, me shell fragments, hard, dated, moderately to highly		2/4/3/4			
-			100	weathered, intergr	anular and moldic porosity.		2/1/2/2			
5			1000				2/4/11/14			
-			900				14/11/4/2			
10			800				19/14/11/7			
-			700	Decreesing and			2/19/15/14			
			900	predominantly white	ontent, color grades to e.	10 0 10 0 20 0 0 0 0 10 0 1 0 0 20 0 0 0 0	19/27/35/44			
15—				Refusal		1 5 2 5 5 7 2 5 2 5 2 5 1 2 5 2 5 5 7 2 7 5 2 5 2 5	4/9/50			
			400				8/7/7/35			
20—	·		1100				17/49/50			
			400			200 (1200) 1 (201) (20 200 (1200) 1 (201) (20	14/30/15/20			
1				Refusal		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	49/50			
25—			40			22 12 2 2 4 1 2 2 4 1 2 2 2 2 4 1 2 2 4 1 2 2 4 1 2 2	40/47/49/48			
				Refusal			37/50			
30-			30				15/35/50			
1			30			7: 4: 7: 4 4: 7: 4: 7 7: 4: 7: 4 1: 7: 4: 7 1: 7: 7: 7	17/27/17/17			
			35			1 2 2 3 4 2 5 4 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	5/12/18/16			
35—						E-F-C-F	Ţ			
				P.	AGE 1 of A902MWD8	·	Tetra Tech	NUS		

APPENDIX F

MOBILE LABORATORY SCREENING RESULTS

KB LABS, INC.

6821 Southwest Archer Road Gainesville, Florida 32608

telephone (352) 495-8411 fax (352) 495-8411

July 6, 1998

Mr. Paul Calligan
TetraTech, Inc.
1311 Executive Center Drive, Suite 220
Tallahassee, FL 32301

Dear Mr. Calligan:

Enclosed are a Project Narrative and Summary Data Reports for the on-site screening analyses performed by KB Labs, Inc. at Boca Chica NAS from June 22 through 26, 1998. Upon request, I would be glad to provide additional copies of the individual sample data sheets provided in the field.

If you have any questions, please do not hesitate to call me at (352) 377-2349.

Sincerely,

M. Kelly Bergdoll

President

MKB:cms

Enclosures

KB Labs, Inc. 6821 SW Archer Road Gainesville, FL 32618 (352) 495-8411

PROJECT NARRATIVE KB Labs Project No.: 002

Client: Tetratech/Brown & Root

Sampler: Precision Sampling

Project Name: Boca Chica NAS Onsite Dates: 6/22/96 - 6/26/98 KB Labs Project Manager: Kelly Bergdoll Client Project Manager: Paul Calligan

Project Scope

Over the five-day period, 40 water samples and 40 soil samples were analyzed in the KB Labs on-site mobile facility. All water samples were screened for both Diesel Range Organics (DRO) and for the individual aromatic gasoline range components - benzene, toluene, ethylbenzene, xylenes (BTEX). All soil samples were screened for DRO, but only 3 soils were screened for BTEX after it was determined from the DRO results that screening of all soil samples for BTEX was not necessary.

Analytical Screening Methods

<u>DRO</u> – 35 millilters (mL) of water sample were extracted with 5 mL of hexane. 5 grams (gm) of soil sample were extracted with 5 mL of methanol. 2 microliters (uL) of the sample extract were then injected into a gas chromatograph (GC) and the components were separated by packed column chromatography and measured with a flame ionization detector (FID). Sample components were measured against components in a diesel standard. A single value comprised of a summation of all responses in the diesel range was reported for each screening analysis. This method is a modified version of EPA method 8015 and was designed specifically for rapid field screening analysis.

BTEX - 5 mL of water sample were purged with helium and the volatile components were collected on a solid-phase adsorption trap. 5 gm of soil sample were first extracted with 5 mL of methanol and a 100-uL aliquot of the methanol extract was then added to 5 mL of laboratory reagent water which were then purged with helium like a water sample. The adsorption trap was then heated and back-purged with helium and the components were separated by capillary column gas chromatography and measured with a mass spectrometer (GC/MS) operated in the electron impact full-scan mode. The individual BTEX components in the samples were then measured against BTEX standards. This method was based on EPA Method 8260b with minor changes designed to better accommodate the method for more rapid field screening analysis.

Screening Data

Laboratory screening results were provided to the client on an as-completed or next-day basis. For DRO reported data, the established reporting limits or practical quantitation limits were 3 milligrams per liter (mg/L) for the water samples and 20 milligrams per kilogram (mg/kg) for the soil samples. For BTEX reported data, the reporting limits or practical quantitation limits were 5 micrograms/liter (ug/L) for the water samples and 250 ug/L for the soil samples. (A 5-mL purging vessel was used instead of a 25-mL vessel in order to restrict sample foaming due to excess turbidity. This increased the laboratory's established PQLs by a factor of 5.) During BTEX analysis, GC/MS chromatograms were also routinely screened by the analyst for MTBE and halogenated volatiles, none of which were detected. Correlation data for naphthalene was also collected by the GC/MS analyst and is available if needed. All data produced in the field has been reviewed and approved by the KB Labs, Inc. QA Officer.

Signature: Mulling Cus Title: Quality Assurance Officer Date: July 6, 1998

KB Labs, Inc. 6821 SW Archer Road Gainesville, FL 32618 (352).495-8411

SUMMARY DATA REPORT

Client: Tetratech/Brown & Root Project Name: Boca Chica NAS Sampler: Precision Sampling

Project No: 002

Onsite Dates: 6/22/98 - 6/26/98

KB Labs Project Manager: Kelly Bergdoll

Matrix: Water

Client Project Manager: Paul Calligan

	DRO-	Benzene	Toluene	Ethylbenzene - 1	Total Xylenes
Sample ID	/== (mp/b)=====	(ro/e)	(up/t):	e e e e e e e e e e e e e e e e e e e	
SB01-MLW	9.26	ND	ND	ND	ND
SB02-MLW	19.4	10.7	ND	ND	ND
SB03-MLW	11.3.	ND.	ND.	ND	ND
SB04-MLW	10.2	ND	ND	ND	ND
SB05-MLW	9.61	ND	ND	: ND	ND
SB06-MLW	9.56	>200	ND	ND	ND
SB07-MLW	10.6	ND	ND.	ND	ND
SB06-MLW	9.3	14.8	ND	ND	ND
SB09-MLW	9.94	33.1	ND	ND	ND
SB10-MLW	9.24	ND	ND	ND	ND
SB11-MLW	ND.	>150	ND.	ND	ND
SB12-MLW	ND	ND	ND	ND	ND
SB13-MLW	ND	ND	ND	ND	ND
SB14-MLW	ND	ND	ND	ND	ND
SB15-MLW	ND.	ND.	ND	ND	ND
SB16-MLW	ND	ND	ND	ND	ND
SB17-MLW	ND	ND	ND	ND	ND
SB18-MLW	ND	ND	ND	ND	ND
SB19-MLW	13.5	ND_	ND.	ND.	ND
SB20-MLW	ND	ND	ND	ND	ND
SB21-MLW	ND	ND	ND	ND	ND.
SB22-MLW	· ND	ND	ND	ND	ND
SB23-MLW	ND.	ND.	ND.	ND.	ND
SB24-MLW	ND	ND	ND	ND	ND
SB25-MLW	ND	ND	ND	ND	ND
SB26-ML36	ND	ND	ND	ND	ND
SB27-ML36	ND.	ND.	12.1	2.8	8.8
SB28-ML36	ND	ND	ND	ND	ND
SB29-ML36	ND	ND	ND ·	ND	ND
SB30-ML03	ND	ND	ND	ND	ND
SB31-ML36	ND	ND	ND	ND	ND
SB32-ML36	ND	ND	ND	ND	ND
SB33-ML36	ND	ND	ND	ND	ND
SB34-ML36	ND	ND	ND	ND	ND
SB35-ML03	ND.	ND.	ND_	ND	ND
SB36-ML03	ND	10.4	ND	ND	ND
SB37-ML03	ND	ND	ND	ND.	ND
SB38-ML36	ND	ND	ND	ND ND	ND
SB39-ML03	ND.	ND.	ND.	>200	ND
SB40-ML03	ND	7.8	4.7	ND	ND

Note: Practical Quantitation Limits (PQLs) = 3 mg/L (DRO), 5 ug/L (BTEX)

ND = Not Detected

NA = Not Analyzed

KB Labs, Inc. 6821 SW Archer Road Gainesville, FL 32618 (352) 495-8411

SUMMARY DATA REPORT

Client: Tetratech/Brown & Root Sampler: Precision Sampling Project No: 002

Project Name: Boca Chica NAS KB Labs Project Manager: Kelly Bergdoll Matrix: Soil

Onsite Dates: 6/22/98 - 6/26/98

Client Project Manager: Paul Calligan

Sample DRO Benzene Toluene Ethylbenzene Toluene Toluene	(ag/Ag) *** NA NA NA NA NA NA NA NA NA
SB01-ML03 22,100 NA NA NA SB02-ML03 18,100 NA NA NA SB03-ML36 219 NA NA NA SB04-ML03 9,260 NA NA NA SB05-ML03 311 NA NA NA SB05-ML03 89 NA NA NA SB07-ML03 14,900 NA NA NA SB09-ML36 239 NA NA NA SB09-ML36 1,830 NA NA NA SB10-ML03 1,210 NA NA NA SB1-ML03 1,210 NA NA NA SB12-ML03 8,790 NA NA NA SB13-ML03 1,520 NA NA NA SB14-ML03 ND NA NA NA SB15-ML03 ND NA NA NA SB16-ML36 176 NA NA NA <	NA N
SB02-ML03 18,100 NA NA NA NA SB03-ML36 219 NA NA NA NA SB04-ML03 9,260 NA NA NA NA SB05-ML03 311 NA NA NA NA SB06-ML03 89 NA NA NA NA SB07-ML03 14,900 NA NA NA NA SB09-ML36 239 NA NA NA NA SB09-ML36 1,830 NA NA NA NA SB10-ML03 1,210 NA NA NA NA SB1-ML03 1,210 NA NA NA NA SB12-ML03 8,790 NA NA NA NA SB13-ML03 1,520 NA NA NA NA SB15-ML03 ND NA NA NA NA SB16-ML36 176 NA NA NA	NA
SB03-ML36 219 NA NA NA SB04-ML03 9,260 NA NA NA SB05-ML03 311 NA NA NA SB06-ML03 89 NA NA NA SB07-ML03 14,900 NA NA NA SB08-ML36 239 NA NA NA SB09-ML36 1,830 NA NA NA SB10-ML03 1,210 NA NA NA SB10-ML03 1,210 NA NA NA SB12-ML03 1,620 NA NA NA SB13-ML03 1,520 NA NA NA SB14-ML03 ND NA NA NA SB15-ML03 ND NA NA NA SB16-ML36 176 NA NA NA SB17-ML36 3,580 NA NA NA SB19-ML36 64 NA NA NA	NA NA NA NA NA NA NA
SB05-ML03 311 NA NA NA SB06-ML03 89 NA NA NA SB07-ML03 14,900 NA NA NA SB08-ML36 239 NA NA NA SB09-ML36 1,830 NA NA NA SB10-ML03 1,210 NA NA NA SB11-ML03 1,210 NA NA NA SB12-ML03 8,790 NA NA NA SB12-ML03 8,790 NA NA NA SB13-ML03 1,520 NA NA NA SB14-ML03 ND NA NA NA SB15-ML03 ND NA NA NA SB15-ML03 176 NA NA NA SB17-ML36 3,580 NA NA NA SB19-ML36 64 NA NA NA SB20-ML36 ND NA NA NA	NA NA NA NA NA NA NA
SB06-ML03 89 NA NA NA SB07-ML03 14,900 NA NA NA SB08-ML36 239 NA NA NA SB09-ML36 1,830 NA NA NA SB10-ML03 1,210 NA NA NA SB11-ML03 164 NA NA NA SB12-ML03 8,790 NA NA NA SB13-ML03 1,520 NA NA NA SB13-ML03 ND NA NA NA SB15-ML03 ND NA NA NA SB15-ML03 ND NA NA NA SB16-ML36 176 NA NA NA SB17-ML36 3,580 NA NA NA SB19-ML36 64 NA NA NA SB20-ML36 ND NA NA NA SB21-ML36 57 NA NA NA <td>NA NA NA NA NA NA NA</td>	NA NA NA NA NA NA NA
SB07-ML03 14,900 NA NA NA SB08-ML36 239 NA NA NA SB09-ML36 1,830 NA NA NA SB10-ML03 1,210 NA NA NA SB11-ML36 164 NA NA NA SB12-ML03 8,790 NA NA NA SB13-ML03 1,520 NA NA NA SB14-ML03 ND NA NA NA SB15-ML03 ND NA NA NA SB15-ML03 ND NA NA NA SB16-ML36 176 NA NA NA SB17-ML36 3,580 NA NA NA SB19-ML36 64 NA NA NA SB20-ML36 ND NA NA NA SB21-ML36 57 NA NA NA	NA NA NA NA NA NA
SB06-ML36 239 NA NA NA SB09-ML36 1,830 NA NA NA SB10-ML03 1,210 NA NA NA SB11-ML36 164 NA NA NA SB12-ML03 8,790 NA NA NA SB13-ML03 1,520 NA NA NA SB14-ML03 ND NA NA NA SB15-ML03 ND NA NA NA SB16-ML36 176 NA NA NA SB17-ML36 3,580 NA NA NA SB19-ML36 2,660 NA NA NA SB20-ML36 ND NA NA NA SB21-ML36 57 NA NA NA	NA NA NA NA NA
SB09-ML36 1,830 NA NA NA SB10-ML03 1,210 NA NA NA SB11-ML36 164 NA NA NA SB12-ML03 8,790 NA NA NA SB13-ML03 1,520 NA NA NA SB14-ML03 ND NA NA NA SB15-ML03 ND NA NA NA SB16-ML36 176 NA NA NA SB17-ML36 3,580 NA NA NA SB19-ML36 2,660 NA NA NA SB20-ML36 ND NA NA NA SB21-ML36 57 NA NA NA	NA NA NA NA
SB10-ML03 1,210 NA NA NA SB11-ML36 164 NA NA NA SB12-ML03 8,790 NA NA NA SB13-ML03 1,520 NA NA NA SB14-ML03 ND NA NA NA SB15-ML03 ND NA NA NA SB16-ML36 176 NA NA NA SB17-ML36 3,580 NA NA NA SB18-ML36 2,660 NA NA NA SB19-ML36 64 NA NA NA SB20-ML36 ND NA NA NA SB21-ML36 57 NA NA NA	NA NA NA NA
SB11-ML36 164 NA NA NA SB12-ML03 8,790 NA NA NA SB13-ML03 1,520 NA NA NA SB14-ML03 ND NA NA NA SB15-ML03 ND NA NA NA SB16-ML36 176 NA NA NA SB17-ML36 3,580 NA NA NA SB18-ML36 2,660 NA NA NA SB19-ML36 64 NA NA NA SB20-ML36 ND NA NA NA SB21-ML36 57 NA NA NA	NA NA NA
SB12-ML03 8,790 NA NA NA SB13-ML03 1,520 NA NA NA SB14-ML03 ND NA NA NA SB15-ML03 ND NA NA NA SB16-ML36 176 NA NA NA SB17-ML36 3,580 NA NA NA SB18-ML36 2,660 NA NA NA SB19-ML36 64 NA NA NA SB20-ML36 ND NA NA NA SB21-ML36 57 NA NA NA	NA NA
SB13-ML03 1,520 NA NA NA SB14-ML03 ND NA NA NA SB15-ML03 ND NA NA NA SB16-ML36 176 NA NA NA SB17-ML36 3,580 NA NA NA SB18-ML36 2,660 NA NA NA SB19-ML36 64 NA NA NA SB20-ML36 ND NA NA NA SB21-ML36 57 NA NA NA	NA
SB14-ML03 ND NA NA NA SB15-ML03 ND NA NA NA SB16-ML36 176 NA NA NA SB17-ML36 3,580 NA NA NA SB18-ML36 2,660 NA NA NA SB19-ML36 64 NA NA NA SB20-ML36 ND NA NA NA SB21-ML36 57 NA NA NA	
SB15-ML03 ND NA NA NA SB16-ML36 176 NA NA NA SB17-ML36 3,580 NA NA NA SB18-ML36 2,660 NA NA NA SB19-ML36 64 NA NA NA SB20-ML36 ND NA NA NA SB21-ML36 57 NA NA NA	NA
SB16-ML36 176 NA NA NA SB17-ML36 3,580 NA NA NA SB18-ML36 2,660 NA NA NA SB19-ML36 64 NA NA NA SB20-ML36 ND NA NA NA SB21-ML36 57 NA NA NA	
SB17-ML36 3,580 NA NA NA SB18-ML36 2,660 NA NA NA SB19-ML36 64 NA NA NA SB20-ML36 ND NA NA NA SB21-ML36 57 NA NA NA	NA
SB18-ML36 2,660 NA NA NA SB19-ML36 64 NA NA NA SB20-ML36 ND NA NA NA SB21-ML36 57 NA NA NA	NA
SB19-ML36 64 NA NA NA SB20-ML36 ND NA NA NA SB21-ML36 57 NA NA NA	NA
SB20-ML36 ND NA NA NA SB21-ML36 57 NA NA NA	NA
SB21-ML36 57 NA NA NA	NA
	NA
SR22.MI 36 54 NA NA NA	NA
ODZZ-WILLO	NA
SB23-ML36 ND ND ND ND	ND
SB24-ML36 78 ND ND ND	ND
SB25-ML36 ND ND ND ND	ND
SB26-ML36 ND NA NA NA	NA .
SB27-ML36 147 NA NA NA	NA ·
SB28-ML36 469 NA NA NA	NA
SB29-ML36 ND NA NA NA	NΑ
SB30-ML03 58 NA NA NA NA	NA
SB31-ML36 462 NA NA NA	ŅA
SB32-ML36 ND NA NA NA	NA
SB33-ML36 170 NA NA NA	NA
SB34-ML36 ND NA NA NA	NA
SB35-ML03 58 NA NA NA NA	ŅA
SB36-ML03 ND NA NA NA	NA
SB37-ML03 ND NA NA NA	NA
SB38-ML36 ND NA NA NA	NA
SB39-ML03 ND NA NA NA	
SB40-ML03 ND NA NA NA	NA

ND = Not Detected

NA = Not Analyzed

Note: Practical Quantitation Limits (PQLs) = 20 mg/kg (DRO), 250 ug/kg (BTEX)

APPENDIX G

LABORATORY ANALYTICAL REPORTS FOR SOIL AND SEDIMENT

210 Park Road, Oviedo, Florida 32765 Phone: 407-359-7194 Fax: 407-359-7197

09-16-1998

Paul Calligan
Tetra Tech NUS, Inc.
1311 Executive Center Drive, Ste. 220
Tallahassee, FL 32301-

Dear Paul Calligan:

Enclosed are the results of the analysis of your samples received 08/26/1998.

Our laboratory is certified by the Florida DHRS (Lab #E83239) and operates under an FDEP approved Comprehensive Quality Assurance Plan (#900134G). Unless otherwise noted, all results are reported as received. All data were determined in accordance with published procedures (EPA-600/4-79-020), Methods for Chemical Analysis of Water and Wastes, Revised March 1983 and/or Standard Methods for the examination of Water and Wastewater, 18th Edition 1989 and/or Test Methods for Evaluating Solid Waste (EPA-SW-846, Revised January 1995), unless stated otherwise in our CompQapp under method modifications.

If you have any questions, please do not hesitate to give me a call.

Sincerely,

Andrew Harrison Laboratory Manager

210 Park Road, Oviedo, Florida 32765 Fax: 407-359-7197 Phone: 407-359-7194

Client:

Tetra Tech NUS, Inc.

1311 Executive Center Drive, Ste. 220

Tallahassee, FL 32301-

Contact: Paul Calligan

Phone:

(850) 656-5458

Laboratory Reference Number: 98080182

Project Name: Truck Fill Stand/NAS Key West

Project Number: 7586/CTO-0031

Chain of Custody: 10945

Sample temperature at time of receipt: 4 degrees C

Laboratory ID	Matrix	Client ID	Status	Date/Time Sample	<u>d</u>
98080182-1	Soil	A902-SB41-03	RUN	08/25/1998 15:45	5
98080182-2	Soil	A902-SB42-02	RUN	08/25/1998 16:15	5
98080182-3	Soil	A902-SB43-02	RUN	08/25/1998 16:45	5
98080182-4	Water	EQBL	RUN	08/25/1998 16:45	5

Number	Parameter	Description
1	EPA 8310	PAH's by HPLC
3	FL-PRO	Petroleum Hydrocarbons
1	FL-PRO	Petroleum Hydrocarbons
3	EPA 8100	Polynuclear Aromatic Hydrocarbons
3	EPA 8021	Volatile Organics
1	EPA 8021	Volatile Organics
3	EPA 415.1	Total Organic Carbon

Case Narrative

Paul Calligan Tetra Tech NUS, Inc. 1311 Executive Center Drive, Ste. 220 Tallahassee, FL 32301-

CASE NARRATIVE for Work Order: 98080182

Project Number: 7586/CTO-0031

Project Name: Truck Fill Stand/NAS Key West

This Case Narrative is a summary of events and/or problems encountered with this Work Order.

NOTE: EPA 8310 hits less than 1ppb cannot be confirmed.

Analysis for EPA 8100 in place of EPA 8310 was authorized by Mr. Calligan on 8/30/98.

For samples requesting EPA 8021 analysis, the GCMS method EPA 624 was substituted in order to generate the highest quality data at no additional cost.

Analysis for TOC was performed by Bottorf, FHRS#E83283.

Definition of Flags

- DL
- No surrogate result due to dilution or matrix interference.
 Estimated Value, value not accurate.
 Off-scale high. Actual value is greater than value given.
 Value reported is less than the laboratory method detection limit.
- Analyte was detected in the blank and sample.

QC Batch Summary

Paul Calligan
Tetra Tech NUS, Inc.
1311 Executive Center Drive, Ste. 220
Tallahassee, FL 32301-

QC BATCH SUMMARY for Work Order: 98080182

Project Number: 7586/CTO-0031

Project Name: Truck Fill Stand/NAS Key West

Method	SubNum	QC Batch
EPA 8310 - PAH's by HPLC		
	-4	9808PAH110
FL-PRO - Petroleum Hydroc	arbons	
	-1	9808FLRO102
	-2	9808FLRO102
	-3	9808FLRO102
FL-PRO - Petroleum Hydroc	arbons	
	-4	9808FLRO099
EPA 8100 - Polynuclear Aron	natic Hydroca	rbons
-	-1	9808PAH106
	-2	9808PAH106
	-3	9808PAH106
EPA 415.1 - Total Organic Ca	arbon	
EPA 8021 - Volatile Organics	;	
_	-1	9809MS1007
	-2	9809MS1007
	-3	9809MS1007
EPA 8021 - Volatile Organics	5	
	-4	9808MS2052

PC&B Environmental Laboratories, Inc. 210 Park Road

210 Park Road Oviedo, FL 32765 PHONE: 407-359-7194 FAX: 359-7197 Volatile Organics

CLIENT NAME: Tetra Tech NUS, Inc.
PROJECT NAME: Truck Fill Stand/NAS Key West
PROJECT NUMBER: 7586/CTO-0031
DATE RECEIVED: 08/26/1998
ANALYTICAL PROTOCOL: EPA 8021

ab Reference Number :

Client Sample ID:
Date Sampled:
Date Extracted:
Date Analyzed:
Sample Matrix (as

98080182-1 A902-SB41-03 08/25/1998 08/26/1998 09/03/1998 Soil GCMS

Date Analyzed :
Sample Matrix (as Received):
Analysis Confirmed :
Dilution Factor :

pie Matrix (as received).

Soil

ysis Confirmed:

GCN

inn Factor:

1

MDL	Analyte	Results/Flag Units	Analyst
5	Benzene	5 U ug/kg	NM
5	Bromobenzene	5 U ug/kg	NM
5	Bromochloromethane	5 U ug/kg	NM
5	Bromodichloromethane	5 U ug/kg	NM
5	Bromoform	5 U ug/kg	NM
5	Bromomethane	5 U ug/kg	NM
5	n-Butylbenzene	5 U ug/kg	NM
5	sec-Butylbenzene	5 U ug/kg	NM
5	tert-Butylbenzene	5 U ug/kg	NM
5	Carbon tetrachloride	5 U ug/kg	NM
5	Chlorobenzene	5 U ug/kg	NM
5	Chloroethane	5 U ug/kg	NM
5	Chloroform	5 U ug/kg	NM
5	Chloromethane	5 U ug/kg	NM
5	2-Chlorotoluene	5 U ug/kg	NM
5	4-Chlorotoluene	5 U ug/kg	NM
5	Dibromochloromethane	5 U ug/kg	NM
5	1,2-Dibromoethane	5 U ug/kg	NM
5	Dibromomethane	5 U ug/kg	NM
5	1,2-Dichlorobenzene	5 U ug/kg	NM
5	1,3-Dichlorobenzene	5 U ug/kg	NM
5	1,4-Dichlorobenzene	5 U ug/kg	NM
5	Dichlorodifluoromethane	5 U ug/kg	NM
5	1,1-Dichloroethane	5 U ug/kg	NM
5	1,2-Dichloroethane	5 U ug/kg	
5	1,1-Dichloroethene	5 U ug/kg	NM
5	cis-1,2-Dichloroethene	.	NM
5	trans-1,2-Dichloroethene	5 U ug/kg 5 U ug/kg	NM
5	1,2-Dichloropropane	5 U ug/kg	NM
5	1,3-Dichloropropane	5 U ug/kg	NM
5	2,2-Dichloropropane	5 U ug/kg	NM NA
5	1,1-Dichloropropene		NM
5	Ethylbenzene	5 U ug/kg 5 U ug/kg	NM NM
5	Hexachlorobutadiene	5 U ug/kg	
5	Isopropylbenzene	~ ·	NM
5	p-Isopropyltoluene	0.9	NM
5	Methylene chloride		NM
5	Naphthalene	J	NM
5	n-Propylbenzene	-33	NM
5	Styrene	12 ug/kg	NM
·5	1,1,1,2-Tetrachloroethane	5 U ug/kg	NM
5		5 U ug/kg	NM
	1,1,2,2-Tetrachloroethane	5 U ug/kg	N M
5	Tetrachloroethene	5 U ug/kg	NM
5	Toluene	5 U ug/kg	NM
5	1,2,3-Trichlorobenzene	5 U ug/kg	NM
5	1,2,4-Trichlorobenzene	5 U ug/kg	NM
5	1,1,1-Trichloroethane	5 U ug/kg	NM
5	1,1,2-Trichloroethane	5 U ug/kg	NM
5	Trichloroethene	5 U ug/kg	NM
5	Trichlorofluoromethane	5 U ug/kg	NM
5	1,2,3-Trichloropropane	5 U ug/kg	NM
5	1,2,4-Trimethylbenzene	49 ug/kg	NM
5	1,3,5-Trimethylbenzene	15 ug/kg	NM
5	Vinyl chloride	5 U ug/kg	NM

210 Park Road Oviedo, FL 32765 PHONE: 407-359-7194 FAX: 359-7197 Volatile Organics

CLIENT NAME: Tetra Tech NUS, Inc. PROJECT NAME: Truck Fill Stand/NAS Key West

PROJECT NUMBER: 7586/CTO-0031

DATE RECEIVED: 08/26/1998

ANALYTICAL PROTOCOL: EPA 8021

Lab Reference Number : Client Sample ID: Date Sampled: Date Extracted: Date Analyzed:

98080182-1 A902-SB41-03 08/25/1998 08/26/1998 09/03/1998 Soil **GCMS**

Sample Matrix (as Received): Analysis Confirmed:

Dilution Factor:

	MDL Analyte		Results/Flag Units	Analyst
5	m&p-Xylenes	5 U	ug/kg NM	
5	o-Xylene	5 U	ug/kg NM	
5	MTBE	5 U	ug/kg NM	
	(Surr) 1,2-Dichloroethane-d4 (%)	88	% NM	
	(Surr) Toluene-d8 (%)	95	% NM	
	(Surr) 4-Bromofluorobenzene (%)	130	% NM	

210 Park Road Oviedo, FL 32765 PHONE: 407-359-7194 FAX: 359-7197 Volatile Organics

CLIENT NAME: Tetra Tech NUS, Inc.
PROJECT NAME: Truck Fill Stand/NAS Key West
PROJECT NUMBER: 7586/CTO-0031

DATE RECEIVED: 08/26/1998 ANALYTICAL PROTOCOL: EPA 8021

ab Reference Number :

Slient Sample ID : Date Sampled : Date Extracted :

98080182-2 A902-SB42-02

08/25/1998 08/26/1998 09/03/1998

Soil GCMS

Date Analyzed :
Sample Matrix (as Received):
Analysis Confirmed :
Dilution Factor :

Benzene Bromobenzene	5 U	ug/kg	NM
			LAIAL
	5 U	ug/kg	NM
Bromochloromethane	5 U	ug/kg	NM
Bromodichloromethane	5 U	ug/kg	NM
Bromoform	5 U	ug/kg	NM
Bromomethane	5 Ú		NM
n-Butylbenzene			NM
sec-Butylbenzene			NM
			NM:
Carbon tetrachloride			NM
Chlorobenzene			NM
Chloroethane			NM
Chloroform			NM
			NM
			NM NM
			NM
			NM
			NM
•			NM
•			NM
			NM
			NM
			NM
•			NM
•			NM
		ug/kg	NM
•			NM
	5 U	ug/kg	NM
	5 U		NM
	5 U	ug/kg	NM
	21 V	ug/kg	NM
Naphthalene	5 U	ug/kg	NM
n-Propylbenzene	13	ug/kg	NM
Styrene	5 U	ug/kg	NM
1,1,1,2-Tetrachioroethane	5 U	ug/kg	NM
1,1,2,2-Tetrachloroethane	5 U	ug/kg	NM
Tetrachloroethene	5 Ü		NM
Toluene	5 U		NM
1,2,3-Trichlorobenzene		ug/kg	NM
			NM
			NM
			NM
	20		NM NM
	n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane 2-Chlorotoluene 4-Chlorotoluene Dibromochloromethane 1,2-Dibromoethane Dibromomethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Dichlorodifluoromethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethene trans-1,2-Dichloroethene trans-1,2-Dichloropropane 1,3-Dichloropropane 1,3-Dichloropropane 1,1-Dichloropropane 1,1-Dichloropropane 1,1-Dichloropropane 1,1-Dichloropropane 1,1-Dichloropropane 1,1-Dichloropropane 1,1-Dichloropropane Styrene 1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane Tetrachloroethene Toluene	n-Butylbenzene sec-Butylbenzene tert-Butylbenzene tert-Butylbenzene Carbon tetrachloride Carbon tetrachloride Chlorobenzene Chlorothane Chloroform 5 U Chloromethane 5 U Chloromethane 5 U Chlorothoromethane 5 U Chlorothorothoromethane 5 U Chlorothoromethane 5 U Chlorothoromet	Bromomethane

Volatile Organics

CLIENT NAME: Tetra Tech NUS, Inc.

210 Park Road Oviedo, FL 32765 PHONE: 407-359-7194 FAX: 359-7197

PROJECT NAME: Truck Fill Stand/NAS Key West

PROJECT NUMBER: 7586/CTO-0031 DATE RECEIVED: 08/26/1998

ANALYTICAL PROTOCOL: EPA 8021

Lab Reference Number :

98080182-2 A902-SB42-02

Client Sample ID: Date Sampled: Date Extracted: Date Analyzed:

08/25/1998 08/26/1998

Sample Matrix (as Received): Analysis Confirmed:

09/03/1998 Soil

GCMS

Dilution Factor:

	MDL Analyte			Results/Fla	g Units	Analyst
5	m&p-Xylenes	5	Ų	ug/kg	NM	
5	o-Xylene	5	U	ug/kg	NM	
5	MTBE	5	U	ug/kg	NM	
	(Surr) 1,2-Dichloroethane-d4 (%)	92		%	NM	
	(Surr) Toluene-d8 (%)	98		%	N M	
	(Surr) 4-Bromofluorobenzene (%)	137		%	NM	

210 Park Road Oviedo, FL 32765 PHONE: 407-359-7194 FAX: 359-7197 Volatile Organics

CLIENT NAME: Tetra Tech NUS, Inc.
PROJECT NAME: Truck Fill Stand/NAS Key West
PROJECT NUMBER: 758/02TO-0031

DATE RECEIVED: 08/26/1998 ANALYTICAL PROTOCOL: EPA 8021

98080182-3 A902-SB43-02 08/25/1998 08/26/1998 09/03/1998 Soil

ab Reference Number :
Client Sample ID :
Date Sampled :
Date Extracted :
Date Analyzed :
Sample Matrix (as Received):
Analysis Confirmed :
Client of Exercise :
Confirmed :
Co

GCMS

ENGL. At a sec	F4	
Dilution	-actor	•
Dilution	, actor	

MDL	Analyte	Results/Flag		Analyst
5	Benzene	5 U	ug/kg	NM
5	Bromobenzene	5 U	ug/kg	NM
5	Bromochloromethane	5 U	ug/kg	NM
5	Bromodichloromethane	5 U	ug/kg	NM
5	Bromoform	5 U	ug/kg	NM
5	Bromomethane	5 _. U	ug/kg	NM
. 5	n-Butylbenzene	5 U	ug/kg	NM
5	sec-Butylbenzene	5 U	ug/kg	NM
5	tert-Butylbenzene	5 U	ug/kg	NM
5	Carbon tetrachloride	5 U	ug/kg	NM
5	Chlorobenzene	5 U	ug/kg	NM
5	Chloroethane	5 U	ug/kg	NM
. 5	Chloroform	5 U	ug/kg	NM
5	Chloromethane	5 U	ug/kg	NM
5	2-Chlorotoluene	5 U	ug/kg	NM
5	4-Chlorotoluene	5 U	ug/kg	NM
5	Dibromochloromethane	5 U	ug/kg	NM
5	1,2-Dibromoethane	5 U	ug/kg	NM .
5	Dibromomethane	5 U	ug/kg	NM
5	1,2-Dichlorobenzene	5 U	ug/kg	NM
5	1,3-Dichlorobenzene	5 U	ug/kg	NM
5	1,4-Dichlorobenzene	5 U	ug/kg	NM
5	Dichlorodifluoromethane	5 U	ug/kg	NM
5	1,1-Dichloroethane	. 5 U	ug/kg	NM
5	1,2-Dichloroethane	5 U	ug/kg	NM
5	1,1-Dichloroethene	5 U	ug/kg	NM
5	cis-1,2-Dichloroethene	5 U	ug/kg	NM
5	trans-1,2-Dichloroethene	5 U	ug/kg	NM
5	1,2-Dichloropropane	5 U	ug/kg	N M
5	1,3-Dichloropropane	5 U	ug/kg	NM
5	2,2-Dichloropropane	5 U	ug/kg	NM
5	1,1-Dichloropropene	5 U	ug/kg	NM
5	Ethylbenzene	5 U	ug/kg	NM
- 5	Hexachlorobutadiene	5 U	ug/kg	NM
5	Isopropylbenzene	5 U	ug/kg	NM
5	p-Isopropyitoluene	5 U	ug/kg	NM
5	Methylene chloride	20 V	ug/kg	NM
5	Naphthalene	5 U	ug/kg	NM
5	n-Propylbenzene	5 U	ug/kg	NM
5	Styrene	5 U	ug/kg	NM
5	1,1,1,2-Tetrachloroethane	5 U	ug/kg	NM
5	1,1,2,2-Tetrachloroethane	5 U	ug/kg	NM
5	Tetrachloroethene	5 U	ug/kg	NM
5	Toluene	. 5 U	ug/kg	NM
5	1,2,3-Trichlorobenzene	5 U	ug/kg	NM
5	1,2,4-Trichlorobenzene	5 U	ug/kg	NM
5	1,1,1-Trichloroethane	5 U	ug/kg	NM
5	1,1,2-Trichloroethane	5 U	ug/kg	NM
5	Trichloroethene	5 U	ug/kg	NM
5	Trichlorofluoromethane	5 U	ug/kg	N M
5	1,2,3-Trichloropropane	5 U	ug/kg	NM
5	1,2,4-Trimethylbenzene	5 . U	ug/kg	NM
5	1,3,5-Trimethylbenzene	5 U	ug/kg	NM
5	Vinyl chloride	5 U	ug/kg	NM

210 Park Road Oviedo, FL 32765 PHONE: 407-359-7194 Volatile Organics

CLIENT NAME: Tetra Tech NUS, Inc. PROJECT NAME: Truck Fill Stand/NAS Key West

PROJECT NUMBER: 7586/CTO-0031

DATE RECEIVED: 08/26/1998 ANALYTICAL PROTOCOL: EPA 8021

FAX: 359-7197

Lab Reference Number : Client Sample ID: Date Sampled: Date Extracted :

98080182-3 A902-SB43-02 08/25/1998 08/26/1998 09/03/1998

Date Analyzed: Sample Matrix (as Received):

Soil **GCMS**

Analysis Confirmed: Dilution Factor :

Results/Flag Units Analyst MDL Analyte NM 5 U 5 m&p-Xylenes ug/kg 5 U ug/kg NM 5 o-Xylene 5 MTBE 5 U ug/kg NM (Surr) 1,2-Dichloroethane-d4 (%) NM 100 % % NM (Surr) Toluene-d8 (%) 97 138 % NM (Surr) 4-Bromofluorobenzene (%)

U = Undetected. The value preceeding the 'U' is the MDL for the analyte, based on dilution. Results reported on a Wet Weight basis.

FDEP CompQAPP # 900134G - FHRS Certification # E83239/83353

Reviewed by:

Quality Control Report for Method Blank

Volatile Organics

Matrix: Soil

Lab Sample ID: RB-09-03-98 QC Batch ID: 9809MS1007

Result Units: ug/kg

Analysis Date: 09/03/1998

Preparation Date: 09/03/1998

Method: EPA 8021

Analyst: NM

Analyte	Result	Flag	Analyte	Result	Flag
Benzene	5	U	Bromobenzene	5	Ū
Bromochloromethane	5	U	Bromodichloromethane	5	U
Bromoform	5	U	Bromomethane	5	U
n-Butylbenzene	5	U	sec-Butylbenzene	5	U
tert-Butylbenzene	5	U	Carbon tetrachloride	5	U
Chlorobenzene	5	U	Chloroethane	5	IJ
Chloroform	5	U	Chloromethane	5	IJ
2-Chlorotoluene	5	U	4-Chlorotoluene	5	IJ
Dibromochloromethane	5	U	1,2-Dibromoethane	5	IJ
Dibromomethane	5	U	1,2-Dichlorobenzene	5	U
1,3-Dichlorobenzene	5	U	1,4-Dichlorobenzene	5	U
Dichlorodifluoromethane	5	U	1,1-Dichloroethane	. 5	U
1,2-Dichloroethane	5	U	1,1-Dichloroethene	5	U
cis-1,2-Dichloroethene	5	U	trans-1,2-Dichloroethene	5	U
1,2-Dichloropropane	5	U	1,3-Dichloropropane	5	U
2,2-Dichloropropane	5	U	1,1-Dichloropropene	5	U
Ethylbenzene	5	U	Hexachlorobutadiene	5	U
Isopropylbenzene	5	U	p-Isopropyltoluene	5	U
Methylene chloride	15		Naphthalene	5	U
n-Propylbenzene	5	U	Styrene	5	U
1,1,1,2-Tetrachloroethane	5	U	1,1,2,2-Tetrachloroethane	5	U
Tetrachloroethene	5	U	Toluene	5	U
1,2,3-Trichlorobenzene	5	U	1,2,4-Trichlorobenzene	5	U
1,1,1-Trichloroethane	5	U	1,1,2-Trichloroethane	5	U
Trichloroethene	5	U	Trichlorofluoromethane	5	U
1,2,3-Trichloropropane	5	Ü	1,2,4-Trimethylbenzene	5	U
1,3,5-Trimethylbenzene	5	U	Vinyl chloride	5	U
m&p-Xylenes	5	U	o-Xylene	5	U
(Surr) 1,2-Dichloroethane-d4 (%)	111		(Surr) Toluene-d8 (%)	104	
(Surr) 4-Bromofluorobenzene (%)	118		MTBE	5	U
, ,					

Quality Control Report for LCS Analysis

Volatile Organics

Matrix: Soil

Lab Sample ID: LCS

QC Batch ID: 9809MS1007

LCS Units: ug/kg

Analysis Date: 09/03/1998

Preparation Date: 09/03/1998

Method: EPA 8021

Analyst: NM

Analyte	LCS Conc	LCS Result	Percent Recovery	Lower Control Limit	Upper Control Limit
Benzene	20	21	105	69	139
Carbon tetrachloride	20	18	90	64	134
Chlorobenzene	20	20	100	77	127
1.4-Dichlorobenzene	20	24	120	80	125
1.1-Dichloroethene	20	22	110	64	137
Ethylbenzene	20	19	95	66	128
Toluene	20	17	85	65	135
Trichloroethene	20	19	95	69	136

Quality Control Report for Spike/Spike Duplicate Analysis

Volatile Organics

Matrix: Soil

Lab Sample ID: 9809007-3 QC Batch ID: 9809MS1007

Spike Units: ug/kg

Analysis Date: 09/03/1998

Preparation Date: 09/03/1998

Method: EPA 8021

Analyst: NM

Analyte	Spike Amount	Sample Result	Spike Result	Spike Percent Recovery	MSD Result	MSD Percent Recovery	RPD
Benzene	50	0	49	98	53	106	8
Carbon tetrachloride	50	0	57	114	51	102	11
Chlorobenzene	50	0	48	96	51	102	6
1,4-Dichlorobenzene	50	0	54	108	60	120	11
1,1-Dichloroethene	50	0	52	104	52	104	0
Ethylbenzene	50	0	49	98	49	98	0
Toluene	50	0	42	84	45	90	7
Trichloroethene	50	0	53	106	52	104	2

Quality Control Limits

	Lower	Upper	
Analyte	Limit	Limit	RPD
Benzene	59	144	18
Carbon tetrachloride	49	148	15
Chlorobenzene	67	130	18
1,4-Dichlorobenzene	56	141	18
1,1-Dichloroethene	52	143	18
Ethylbenzene	42	157	19
Toluene	54	136	19
Trichloroethene	59	144	18

210 Park Road Oviedo, FL 32765 PHONE: 407-359-7194 FAX: 359-7197

Volatile Organics

CLIENT NAME: Tetra Tech NUS, Inc. PROJECT NAME: Truck Fill Stand/NAS Key West PROJECT NUMBER: 7586/CTO-0031

DATE RECEIVED: 08/26/1998 ANALYTICAL PROTOCOL: EPA 8021

Lab Reference Number : Client Sample ID :

Date Sampled: Date Extracted: Date Analyzed:

98080182-4 EQBL 08/25/1998

08/27/1998 08/27/1998 Sample Matrix (as Received): Analysis Confirmed : Dilution Factor :

Water **GCMS**

MDL	Analyte	Results/Flag	Units	Analyst
1.0	Benzene	1.0 U	ug/l	NM
1.0	Bromobenzene	1.0 U	ug/l	NM
1.0	Bromochloromethane	1.0 U	ug/l	NM
1.0	Bromodichloromethane	1.0 U	ug/l	NM
1.0	Bromoform	1.0 U	ug/l	NM
1.0	Bromomethane	1.0 U	ug/l	NM
1.0	n-Butylbenzene	1.0 U	ug/l	NM
1.0	sec-Butylbenzene	1.0 U	ug/l	NM
1.0	tert-Butylbenzene	1.0 U	ug/l	NM
1.0	Carbon tetrachloride	1.0 U	ug/l	NM
1.0	Chlorobenzene	1.0 U	ug/l	NM
1.0	Chloroethane	1.0 U	ug/l	NM
1.0	Chloroform	1.0 U	ug/l	NM
1.0	Chloromethane	1.0 U	ug/l	NM
1.0	2-Chlorotoluene	1.0 U	ug/l	NM
1.0	4-Chlorotoluene	1.0 U	ug/l	NM
1.0	Dibromochloromethane	1.0 U	ug/l	NM
1.0	1,2-Dibromoethane	1.0 U	ug/l	NM
1.0	Dibromomethane	1.0 U	ug/i	NM
1.0	1,2-Dichlorobenzene	1.0 U	ug/l	NM
1.0	1,3-Dichlorobenzene	1.0 U	ug/i	NM
1.0	1,4-Dichlorobenzene	1.0 U	ug/l	NM
1.0	Dichlorodifluoromethane	1.0 U	ug/l	NM
1.0	1,1-Dichloroethane	1.0 U	ug/i	NM
1.0	1,2-Dichloroethane	1.0 U	ug/l	NM
1.0	1,1-Dichloroethene	1.0 U	ug/l	NM
1.0	cis-1,2-Dichloroethene	1.0 U	ug/l	NM
1.0	trans-1,2-Dichloroethene	1.0 U	ug/l	NM
1.0	1,2-Dichloropropane	1.0 U	ug/l	NM
1.0	1,3-Dichloropropane	1.0 U	ug/i	NM
1.0	2,2-Dichloropropane	1.0 U	ug/l	NM
1.0	1,1-Dichloropropene	1.0 U	ug/l	NM
1.0	1,3-Dichloropropene (cis)	1.0 U	ug/l	NM
1.0	1,3-Dichloropropene (trans)	1.0 U	ug/l	NM
		1.0 U	-	NM
1.0	Ethylbenzene Heysehlershytediene	1.0 U	ug/l	NM
1.0	Hexachlorobutadiene		ug/l	
1.0	Isopropylbenzene	1.0 U	ug/i	NM
1.0	p-Isopropyltoluene	1.0 U	ug/l	NM
1.0	Methylene chloride	6.5 V	ug/l	NM
1.0	Naphthalene	1.0 U	ug/l	NM
1.0	n-Propylbenzene	1.0 U	ug/l	NM
1.0	Styrene	1.0 U	ug/l	NM ·
1.0	1,1,1,2-Tetrachloroethane	1.0 U	ug/l	NM
1.0	1,1,2,2-Tetrachloroethane	1.0 U	ug/l	NM
1.0	Tetrachloroethene	1.0 U	ug/l	NM
1.0	Toluene	1.0 U	ug/l	NM
1.0	1,2,3-Trichlorobenzene	1.0 U	ug/l	NM
1.0	1,2,4-Trichlorobenzene	1.0 U	ug/l	NM
1.0	1,1,1-Trichloroethane	1.0 U	ug/l	NM
1.0	1,1,2-Trichloroethane	1.0 U	ug/l	NM
1.0	Trichloroethene	1.0 U	ug/l	NM
1.0	Trichlorofluoromethane	1.0 U	ug/l	NM
1.0	1,2,3-Trichloropropane	1.0 U	ug/l	NM
1.0	1,2,4-Trimethylbenzene	1.0 U	ug/l	NM

PC&B Environmental Laboratories, Inc. 210 Park Road

Oviedo, FL 32765 PHONE: 407-359-7194 FAX: 359-7197

Volatile Organics

CLIENT NAME: Tetra Tech NUS, Inc.

PROJECT NAME: Truck Fill Stand/NAS Key West PROJECT NUMBER: 7586/CTO-0031

DATE RECEIVED: 08/26/1998 ANALYTICAL PROTOCOL: EPA 8021

b Reference Number:

plient Sample ID : Date Sampled : Date Extracted : Date Analyzed : Sample Matrix (as Received):

98080182-4 EQBL 08/25/1998 08/27/1998

Analysis Confirmed : Dilution Factor :

08/27/1998	
Water	
GCMS	
1	

	MDL Analyte		Results/Fla	ag Units	Analyst
1.0	1,3,5-Trimethylbenzene	1.0 U	ug/i	NM	
1.0	Vinyl chloride	1.0 U	ug/i	NM	
1.0	MTBE	1.0 U	ug/i	NM	
1.0	o-Xylene	1.0 U	ug/l	NM .	
1.0	m-Xylene	1.0 U	ug/l	NM	
1.0	p-Xylene	1.0 U	ug/l	NM	
	(Surr) 1,2-Dichloroethane-d4 (%)	124	%	NM	
	(Surr) Toluene-d8 (%)	126	%	NM	
	(Surr) 4-Bromofluorobenzene (%)	102	%	NM	

Quality Control Report for Method Blank

Volatile Organics

Matrix: Water

Lab Sample ID: RB-08-27-98

QC Batch ID: 9808MS2052

Result Units: ug/l

Analysis Date: 08/27/1998

Preparation Date: 08/27/1998

Method: EPA 8021

Analyst: NM

Analyte	Result	Flag	Analyte	Result	Flag
Benzene	1.0	U	Bromobenzene	1.0	U
Bromochloromethane	1.0	U	Bromodichloromethane	1.0	U
Bromoform	1.0	U	Bromomethane	1.0	U
n-Butylbenzene	1.0	IJ	sec-Butylbenzene	1.0	U
tert-Butylbenzene	1.0	U	Carbon tetrachloride	1.0	U
Chiorobenzene	1.0	U	Chloroethane	1.0	U
Chloroform	1.0	U	Chloromethane	1.0	U
2-Chlorotoluene	1.0	U	4-Chlorotoluene	1.0	U
Dibromochloromethane	1.0	U	1,2-Dibromoethane	1.0	U
Dibromomethane	1.0	U	1,2-Dichlorobenzene	1.0	U
1,3-Dichlorobenzene	1.0	U	1,4-Dichlorobenzene	1.0	U
Dichlorodifluoromethane	1.0	U	1,1-Dichloroethane	1.0	U
1,2-Dichloroethane	1.0	U	1,1-Dichloroethene	1.0	U
cis-1,2-Dichloroethene	1.0	U	trans-1,2-Dichloroethene	1.0	U
1,2-Dichloropropane	1.0	U	1,3-Dichloropropane	1.0	U
2,2-Dichloropropane	1.0	U	1,1-Dichloropropene	1.0	U
1,3-Dichloropropene (cis)	1.0	U	1,3-Dichloropropene (trans)	1.0	U
Ethylbenzene	1.0	U	Hexachlorobutadiene	1.0	U
Isopropylbenzene	1.0	U	p-Isopropyltoluene	1.0	U
Methylene chloride	6.0		Naphthalene	1.0	U
n-Propylbenzene	1.0	Ü	Styrene	1.0	U
1,1,1,2-Tetrachloroethane	1.0	U	1,1,2,2-Tetrachloroethane	1.0	U
Tetrachloroethene	1.0	U	Toluene	1.0	U
1,2,3-Trichlorobenzene	1.0	U	1,2,4-Trichlorobenzene	1.0	U
1,1,1-Trichloroethane	1.0	U	1,1,2-Trichloroethane	1.0	U
Trichloroethene	1.0	U	Trichlorofluoromethane	1.0	U
1,2,3-Trichloropropane	1.0	U	1,2,4-Trimethylbenzene	1.0	U
1,3,5-Trimethylbenzene	1.0	U	Vinyl chloride	1.0	U
MTBE	1.0	U	o-Xylene	1.0	Ù
m-Xylene	1.0	U	p-Xylene	1.0	U
(Surr) 1,2-Dichloroethane-d4 (%)	102.0		(Surr) Toluene-d8 (%)	126.0	
(Surr) 4-Bromofluorobenzene (%)	97.0				

Quality Control Report for LCS Analysis

Volatile Organics

Matrix: Water

Lab Sample ID: LCS

QC Batch ID: 9808MS2052

LCS Units: ug/l

Analysis Date: 08/27/1998

Preparation Date: 08/27/1998

Method: EPA 8021

Analyst: NM

Analyte	LCS Conc	LCS Result	Percent Recovery	Lower Control Limit	Upper Control Limit
Benzene	50.0	47.0	94	75	120
Carbon tetrachloride	50.0	51.0	102	75	120
Chlorobenzene	50.0	50.0	100	75	120
1.4-Dichlorobenzene	50.0	47.0	94	75	120
1.1-Dichloroethene	50.0	58.0	116	75	120
Ethylbenzene	50.0	52.0	104	75	120
Toluene	50.0	48.0	96	75	120
Trichloroethene	50.0	56.0	112	75	120

Quality Control Report for Spike/Spike Duplicate Analysis

Volatile Organics

Matrix: Water

Lab Sample ID: MW-QC

QC Batch ID: 9808MS2052

Spike Units: ug/l

Analysis Date: 08/27/1998 Preparation Date: 08/27/1998

Method: EPA 8021

Analyst: NM

Analyte	Spike Amount	Sample Result	Spike Result	Spike Percent Recovery	MSD Result	MSD Percent Recovery	RPD
Benzene	50.0	0.0	49.0	98	51.0	102	4
Carbon tetrachloride	50.0	0.0	51.0	102	52.0	104	2
Chlorobenzene	50.0	0.0	51.0	102	51.0	102	0
1,4-Dichlorobenzene	50.0	0.0	49.0	98	50.0	100	2
1.1-Dichloroethene	50.0	0.0	58.0	116	57.0	114	2
Ethylbenzene	50.0	0.0	55.0	110	54.0	108	2
Toluene	50.0	0.0	54.0	108	50.0	100	. 8
Trichloroethene	50.0	0.0	55.0	110	55.0	110	0

Quality Control Limits

	Lower	Upper	
Analyte	Limit	Limit	RPD
Benzene	57	146	15
Carbon tetrachloride	67	135	11
Chlorobenzene	67	128	10
1,4-Dichlorobenzene	72	134	10
1,1-Dichloroethene	76	125	8
Ethylbenzene	75	127	9
Toluene	64	131	11
Trichloroethene	75	122	8

PC&B Environmental Laboratories, Inc. 210 Park Road Oviedo, FL 32765 PHONE: 407-359-7194

Polynuclear Aromatic Hydrocarb

CLIENT NAME: Tetra Tech NUS, Inc. PROJECT NAME: Truck Fill Stand/NAS Key West PROJECT NUMBER: 7586/CTO-0031 DATE RECEIVED: 08/26/1998 ANALYTICAL PROTOCOL: EPA 8100

FAX: 359-7197 ab Reference Number : Client Sample ID :

Date Sampled: Date Extracted : Date Analyzed : 98080182-1 A902-SB41-03 08/25/1998 08/28/1998 08/28/1998

Sample Matrix (as Received):

Analysis Confirmed : Dilution Factor :

Soil No

MDL	Analyte	Results/Flag	Units Ana	lyst
100	Acenaphthene	100 U	ug/kg ELA	
100	Acenaphthylene	100 U	ug/kg ELA	4
100	Anthracene	100 U	ug/kg ELA	4
100	Benzo(a)anthracene	100 U	ug/kg ELA	4
100	Benzo(a)pyrene	100 U	ug/kg ELA	4
100	Benzo(b)fluoranthene	100 U	ug/kg ELA	4
100	Benzo(ghi)perylene	100 U	ug/kg ELA	4
100	Benzo(k)fluoranthene	100 U	ug/kg ELA	4
100	Chrysene	100 U	ug/kg ELA	A:
100	Dibenzo(ah)anthracene	100 U	ug/kg ELA	4
100	Fluoranthene	100 U	ug/kg ELA	4
100	Fluorene	100 U	ug/kg ELA	4
100	Indeno(123-cd)pyrene	100 U	ug/kg ELA	4
100	Naphthalene	100 U	ug/kg EL/	4
100	1-Methyl naphthalene	100 U	ug/kg EL/	Δ.
100	2-Methyl naphthalene	100 U	ug/kg EL/	Ą
100	Phenanthrene	100 U	ug/kg EL/	A
100	Pyrene	100 U	ug/kg EL/	A
100	(Surr) 2-Fluorobiphenyl (%)	72	% EL/	A

210 Park Road Oviedo, FL 32765 PHONE: 407-359-7194 Polynuclear Aromatic Hydrocarb

CLIENT NAME: Tetra Tech NUS, Inc. PROJECT NAME: Truck Fill Stand/NAS Key West

PROJECT NUMBER: 7586/CTO-0031

DATE RECEIVED: 08/26/1998 ANALYTICAL PROTOCOL: EPA 8100

FAX: 359-7197

Lab Reference Number : Client Sample ID : Date Sampled : Date Extracted : Date Analyzed : Sample Matrix (as Received):

Analysis Confirmed:

Dilution Factor:

98080182-2 A902-SB42-02 08/25/1998 08/28/1998 08/28/1998 Soil Yes

MDL	Analyte	Results/Flag	Units	Analyst
100	Acenaphthene	100 U	ug/kg	ELA
100	Acenaphthylene	100 U	ug/kg	ELA
100	Anthracene	100 U	ug/kg	ELA
100	Benzo(a)anthracene	495	ug/kg	ELA
100	Benzo(a)pyrene	460	ug/kg	ELA
100	Benzo(b)fluoranthene	595	ug/kg	ELA
100	Benzo(ghi)perylene	395	ug/kg	ELA
100	Benzo(k)fluoranthene	230	ug/kg	ELA
100	Chrysene	460	ug/kg	ELA
100	Dibenzo(ah)anthracene	100 U	ug/kg	ELA
100	Fluoranthene	1250	ug/kg	ELA
100	Fluorene	100 U	ug/kg	ELA
100	Indeno(123-cd)pyrene	330	ug/kg	ELA
100	Naphthalene	100 U	ug/kg	ELA
100	1-Methyl naphthalene	100 U	ug/kg	ELA
100	2-Methyl naphthalene	100 U	ug/kg	ELA
100	Phenanthrene	860	ug/kg	ELA
100	Pyrene	100 U	ug/kg	ELA
	(Surr) 2-Fluorobiphenyl (%)	66	%	ELA

210 Park Road Oviedo, FL 32765 PHONE: 407-359-7194 Polynuclear Aromatic Hydrocarb

CLIENT NAME: Tetra Tech NUS, Inc. PROJECT NAME: Truck Fill Stand/NAS Key West

PROJECT NUMBER: 7586/CTO-0031

DATE RECEIVED: 08/26/1998 ANALYTICAL PROTOCOL: EPA 8100

FAX: 359-7197 ab Reference Number: lient Sample ID:

Date Sampled:

98080182-3 A902-SB43-02 08/25/1998 08/28/1998 08/28/1998

Date Extracted: Date Analyzed: Sample Matrix (as Received):

Soil No

Analysis Confirmed: Dilution Factor:

> MDL **Analyte** Results/Flag Units Analyst 100 U Acenaphthene ug/kg ELA 100 Acenaphthylene 100 U ug/kg ELA 100 100 U ug/kg ELA 100 Anthracene 100 Benzo(a)anthracene 100 U ug/kg **ELA** 100 U **ELA** 100 Benzo(a)pyrene ug/kg 100 U **ELA** 100 Benzo(b)fluoranthene ug/kg 100 ELA 100 Benzo(ghi)perylene U ug/kg 100 Benzo(k)fluoranthene 100 U ug/kg **ELA** 100 U ELA 100 Chrysene ug/kg 100 U ELA Dibenzo(ah)anthracene ug/kg 100 100 U ELA 100 Fluoranthene ug/kg 100 Fluorene 100 U ug/kg **ELA** 100 U Indeno(123-cd)pyrene ELA 100 ug/kg 100 U ELA 100 Naphthalene ug/kg 100 1-Methyl naphthalene 100 U ug/kg ELA 100 U **ELA** 2-Methyl naphthalene ug/kg 100 100 Phenanthrene 100 U ug/kg **ELA** 100 Pyrene 100 U ug/kg ELA **ELA** 83 % (Surr) 2-Fluorobiphenyl (%)

FDEP CompQAPP # 900134G - FHRS Certification # E83239/83353

Quality Control Report for Method Blank

Polynuclear Aromatic Hydrocarbons

Matrix: Soil

Lab Sample ID: RB-08-28-98

QC Batch ID: 9808PAH106

Result Units: ug/kg

Analysis Date: 08/28/1998 Preparation Date: 08/28/1998

Method: EPA 8100

Analyst: ELA

Analyte	Result	Flag	Analyte	Result	Flag
Acenaphthene	100	U	Acenaphthylene	100	U
Anthracene	100	U	Benzo(a)anthracene	100	U
Benzo(a)pyrene	100	Ü	Benzo(b)fluoranthene	100	U
Benzo(ghi)perylene	100	U	Benzo(k)fluoranthene	100	U
Chrysene	100	U	Dibenzo(ah)anthracene	100	U
Fluoranthene	100	U	Fluorene	100	U
Indeno(123-cd)pyrene	100	U	Naphthalene	100	U
1-Methyl naphthalene	100	U	2-Methyl naphthalene	100	U
Phenanthrene	100	U	Pyrene	100	U
(Surr) 2-Fluorobiphenyl (%)	87			•	

Quality Control Report for LCS/LCS Duplicate Analysis

Polynuclear Aromatic Hydrocarbons

Matrix: Soil

Lab Sample ID: LCS

QC Batch ID: 9808PAH106

LCS Units: ug/kg

Analysis Date: 08/28/1998

Preparation Date: 08/28/1998

Method: EPA 8100

Analyst: ELA

	1.00		1.00	LCS	LCSD	LCSD	
A b-st-	LCS		LCS Result	Percent Recovery	Result	Percent Recovery	RPD
Analyte	Conc						N.FD
(Surr) 2-Fluorobiphenyl	100	0	80	80	80	80	U
Acenaphthene	50	0	49	98	49	98	0
Acenaphthylene	50	0	39	78	39	78	0
Anthracene	50	0	48	96	50	100	4
Benzo(a)anthracene	50	0	35	70	35	70	0
Benzo(a)pyrene	50	0	38	76	35	70	. 8
Benzo(b)fluoranthene	50	0	40	80	40	80	0
Benzo(ghi)perylene	50	0	39	78	40	80	3
Benzo(k)fluoranthene	50	0	40	80	40	80	0
Chrysene	50	0	35	70	35	70	0
Dibenzo(ah)anthracene	50	0	41	82	41	82	0
Fluoranthene	50	0	42	84	44	88	5
Fluorene	50	0	40	80	42	84	5
Indeno(123-cd)pyrene	50	. 0	41	82	41	82	0
Naphthalene	50	0	36	72	36	72	0
Phenanthrene	50	0	38	76	42	84	10
Pyrene	50	0	42	84	44	88	5

Qual	ity	Contro	Limits
------	-----	--------	--------

	Lower	Upper		
Analyte	Limit	Limit	RPD	
SS_2-Fluorobiphenyl	51	100	11	
Acenaphthene	62	125	11	
Acenaphthylene	55	100	9	
Anthracene	64	128	11	
Benzo(a)anthracene	54	110	11	
Benzo(a)pyrene	56	114	11	
Benzo(b)fluoranthene	53	119	13	
Benzo(ghi)perylene	50	112	13	
Benzo(k)fluoranthene	53	119	13	
Chrysene	53	114	12	
Dibenzo(ah)anthracene	51	116	13	
Fluoranthene	58	110	10	
Fluorene	54	107	11	
Indeno(123-cd)pyrene	51	115	13	
Naphthalene	53	94	9	
Phenanthrene	53	112	12	
Pyrene	60	111	10	

Quality Control Report for Spike/Spike Duplicate Analysis

Polynuclear Aromatic Hydrocarbons

Matrix: Soil

Lab Sample ID: 9808142-2

QC Batch ID: 9808PAH106

Spike Units: ug/kg

Analysis Date: 08/28/1998 Preparation Date: 08/28/1998

Method: EPA 8100

Analyst: ELA

				Spike		MSD	
	Spike	Sample	Spike	Percent	MSD	Percent	
Analyte	Amount	Result	Result	Recovery	Result	Recovery	RPD
(Surr) 2-Fluorobiphenyl	100	0	56	56	56	56	0
Acenaphthene	50	0	56	112	56	112	0
Acenaphthylene	50	0	45	90	45	90	0
Anthracene	50	0	56	112	59	118	5
Benzo(a)anthracene	50	0	38	76	40	80	5
Benzo(a)pyrene	50	0	48	96	45	90	6
Benzo(b)fluoranthene	50	0	39	78	37	74	5
Benzo(ghi)perylene	50	0	34	68	34	68	0
Benzo(k)fluoranthene	50	0	39	78	37	74	5
Chrysene	50	0	.36	72	36	72	0
Dibenzo(ah)anthracene	50	0	35	70	33	66	6
Fluoranthene	50	0	50	100	51	102	2
Fluorene	50	0	47	94	47	94	0
Indeno(123-cd)pyrene	50	0	35	70	33	66	6
Naphthalene	50	0	41	82	41	82	0
Phenanthrene	50	0	47	94	48	96	2
Pyrene	50	0	50	100	50	100	0

Quality	Control	Limits
---------	---------	--------

	Lower	Upper	
Analyte	Limit	Limit	RPD
SS_2-Fluorobiphenyl	45	101	13
Acenaphthene	46	125	15
Acenaphthylene	42	105	14
Anthracene	53	132	14
Benzo(a)anthracene	41	121	16
Benzo(a)pyrene	45	119	15
Benzo(b)fluoranthene	44	125	16
Benzo(ghi)perylene	37	120	18
Benzo(k)fluoranthene	44	126	16
Chrysene	48	117	14
Dibenzo(ah)anthracene	39	123	17
Fluoranthene	49	118	14
Fluorene	44	112	14
Indeno(123-cd)pyrene	36	124	18
Naphthalene	38	102	15
Phenanthrene	45	118	15
Pyrene	49	120	14

PAH's by HPLC

PC&B Environmental Laboratories, Inc.

210 Park Road Oviedo, FL 32765 PHONE: 407-359-7194 FAX: 359-7197 CLIENT NAME: Tetra Tech NUS, Inc. PROJECT NAME: Truck Fill Stand/NAS Key West

PROJECT NUMBER: 7586/CTO-0031 DATE RECEIVED: 08/26/1998 **ANALYTICAL PROTOCOL: EPA 8310**

Lab Reference Number :

Client Sample ID: Date Sampled : Date Extracted : Date Analyzed:

98080182-4 **EQBL** 08/25/1998 08/31/1998

Sample Matrix (as Received): Analysis Confirmed:

Dilution Factor:

09/01/1998 Water **GCMS**

MDL	Analyte	Results/Flag	Units	Analyst
5	Acenaphthene	5 U	ug/l	DC
5	Acenaphthylene	5 U	ug/l	DC
5	Anthracene	5 U	ug/l	DC
0.2	Benzo(a)anthracene	0.2 U	ug/i	DC
0.25	Benzo(a)pyrene	0.25 U	ug/l	DC
0.2	Benzo(b)fluoranthene	0.2 U	ug/l	DC
0.2	Benzo(ghi)perylene	0.2 U	ug/i	DC
0.25	Benzo(k)fluoranthene	0.25 U	ug/l	DC
0.01	Chrysene	0.01 U	ug/l	DC
0.2	dibenzo(ah)anthracene	0.2 U	ug/l	DC
0,01	Fluoranthene	0.01 U	ug/l	DC
0.01	Fluorene	0.01 U	ug/l	DC
0.10	Indeno(123cd)pyrene	0.10 U	ug/l	DC
0.05	Naphthalene	0.05 U	ug/l	DC
0.05	1-Methyl naphthalene	0.05 U	ug/l	DC
0.05	2-Methyl naphthalene	0.05 U	ug/l	DC
0.025	Phenanthrene	0.025 U	ug/l	DC
0.025	Pyrene	0.025 U	ug/l	DC

U = Undetected. The value preceeding the 'U' is the MDL for the analyte, based on dilution. Results reported on a Wet Weight basis.

FDEP CompQAPP # 900134G - FHRS Certification # E83239/83353

Quality Control Report for Method Blank

PAH's by HPLC

Matrix: Water

Lab Sample ID: RB-08-31

QC Batch ID: 9808PAH110

Result Units: ug/l

Analysis Date: 09/01/1998

Preparation Date: 08/31/1998

Method: EPA 8310

Analyst: DC

Analyte	Result	Flag	Analyte	Result	Flag
Acenaphthene	5	U	Acenaphthylene	5	U
Anthracene	5	U	Benzo(a)anthracene	0.2	U
Benzo(a)pyrene	0.25	U	Benzo(b)fluoranthene	0.2	U
Benzo(ghi)perylene	0.2	U	Benzo(k)fluoranthene	0.25	U
Chrysene	0.01	U	dibenzo(ah)anthracene	0.2	U
Fluoranthene	0.01	U	Fluorene	0.01	U
Indeno(123cd)pyrene	0.10	U	Naphthalene	0.05	U
1-Methyl naphthalene	0.05	U	2-Methyl naphthalene	0.05	U
Phenanthrene	0.025	U	Pyrene	0.025	U

Quality Control Report for LCS Analysis

PAH's by HPLC

Matrix: Water

Lab Sample ID: LCS

QC Batch ID: 9808PAH110

LCS Units: ug/l

Analysis Date: 09/01/1998

Preparation Date: 08/31/1998

Method: EPA 8310

Analyst: DC

				Lower	Upper
	LCS	LCS	Percent	Control	Control
Analyte	Conc	Result	Recovery	Limit	Limit
Acenaphthene	5	5	100	70	120
Acenaphthylene	5	4	82	70	120
Anthracene	5	5	98	70	120
Benzo(a)anthracene	5.0	5.1	102	70	120
Benzo(a)pyrene	5.00	5.50	110	70	120
Benzo(b)fluoranthene	5.0	5.2	104	70	120
Benzo(ghi)perylene	5.0	5.3	106	70	120
Benzo(k)fluoranthene	5.00	4.20	84	70	120
Chrysene	5.00	4.80	96	70	120
dibenzo(ah)anthracene	5.0	4.4	88	70	120
Fluoranthene	5,00	5.10	102	70	120
Fluorene	5.00	4.80	96	70	120
Indeno(123cd)pyrene	5,00	5.10	102	70	120
Naphthalene	5.00	4.80	96	70	120
Phenanthrene	5.000	4.800	96	70	120
Pyrene	5.000	5.300	106	70	120

Quality Control Report for Spike Analysis

PAH's by HPLC

Matrix: Water

Lab Sample ID: 98080119-1

QC Batch ID: 9808PAH110

Spike Units: ug/l

Analysis Date: 09/01/1998

Preparation Date: 08/31/1998

Method: EPA 8310

Analyst: DC

	Spike	Sample	Spike	Percent	Lower Control	Upper Control
Analyte	Amount	Result	Result	Recovery	Limit	Limit
Acenaphthene	5	0	5	108	60	133
Acenaphthylene	5	0	4	81	60	133
Anthracene	5	0	5	104	60	133
Benzo(a)anthracene	5.0	0.0	5.7	114	60	133
Benzo(a)pyrene	5.00	0.00	6.10	122	60	133
Benzo(b)fluoranthene	5.0	0.0	5.8	116	60	133
Benzo(ghi)perylene	5.0	0.0	5.9	118	60	133
Benzo(k)fluoranthene	5.00	0.00	4.70	94	60	133
Chrysene	5.00	0.00	5.30	106	60	133
dibenzo(ah)anthracene	5.0	0.0	4.9	98	60	133
Fluoranthene	5.00	0.00	5.70	114	60	133
Fluorene	5.00	0.00	4.90	98	60	133
Indeno(123cd)pyrene	5.00	0.00	5.60	112	60	133
Naphthalene	5.00	0.00	3.70	74	60	133
Phenanthrene	5.000	0.000	5.200	104	60	133
Pyrene	5.000	0.000	5.900	118	60	133

210 Park Road Oviedo, FL 32765 PHONE: 407-359-7194 FAX: 359-7197 Petroleum Hydrocarbons

CLIENT NAME: Tetra Tech NUS, Inc. PROJECT NAME: Truck Fill Stand/NAS Key West

PROJECT NUMBER: 7586/CTO-0031 DATE RECEIVED: 08/26/1998 ANALYTICAL PROTOCOL: FL-PRO

.ab Reference Number :

Client Sample ID: Date Sampled: Date Extracted:

98080182-1 A902-SB41-03 08/25/1998 08/28/1998 08/28/1998

Date Analyzed:

Soil No

Sample Matrix (as Received):

Analysis Confirmed: Dilution Factor:

MDL Analyte Results/Flag Units Analyst Total PHS 4.0 U ELA 4.0 mg/kg 79 % ELA (Surr) C-39 (%)

210 Park Road Oviedo, FL 32765 PHONE: 407-359-7194 Petroleum Hydrocarbons

CLIENT NAME: Tetra Tech NUS, Inc.

PROJECT NAME: Truck Fill Stand/NAS Key West

ELA

ELA

PROJECT NUMBER: 7586/CTO-0031

mg/kg

%

DATE RECEIVED: 08/26/1998 ANALYTICAL PROTOCOL: FL-PRO

FAX: 359-7197

Lab Reference Number: Client Sample ID: Date Sampled: Date Extracted: Date Analyzed:

98080182-2 A902-SB42-02 08/25/1998 08/28/1998 08/28/1998

Sample Matrix (as Received):

MDL

40.0

Analyte

Total PHS

(Surr) C-39 (%)

Analysis Confirmed: Dilution Factor:

Soil No 10

Results/Flag Units Analyst

490

0 DL

U = Undetected. The value preceeding the 'U' is the MDL for the analyte, based on dilution. Results reported on a Wet Weight basis. FDEP CompQAPP # 900134G - FHRS Certification # E83239/83353

Reviewed by:

210 Park Road Oviedo, FL 32765 PHONE: 407-359-7194 FAX: 359-7197 Petroleum Hydrocarbons

CLIENT NAME: Tetra Tech NUS, Inc. PROJECT NAME: Truck Fill Stand/NAS Key West PROJECT NUMBER: 7586/CTO-0031

PROJECT NUMBER: 7586/CTO-0031 DATE RECEIVED: 08/26/1998 ANALYTICAL PROTOCOL: FL-PRO

ab Reference Number : Client Sample ID :

Client Sample ID : Date Sampled : Date Extracted : Date Analyzed :

Dilution Factor:

98080182-3 A902-SB43-02 08/25/1998 08/28/1998 08/28/1998

Sample Matrix (as Received): Analysis Confirmed : Soil No

MDL	Analyte	Results/Flag	Units	Analyst
4.0	Total PHS	4.0 U	mg/kg	ELA
	(Surr) C-39 (%)	78	%	ELA

Quality Control Report for Method Blank

INORGANICS

Analyte	Unit	s Result	Flag	QC Batch ID	Analyst
Method: FL-PRO Total PHS	QC Batch: 9808FLRO102 mg/l		Date Prep	: 08/28/1998 Date Anal: 08/28/1998 9808FLRO102	Analyst ELA ELA
Method: FL-PRO (Surr) C-39 (%)	QC Batch: 9808FLRO102 %	Sample ID: RB-08-28-98 83.0	Date Prep	: 08/28/1998 Date Anal: 08/28/1998 9808FLRO102	Analyst: ELA ELA

Quality Control Report for LCS/LCS Duplicate Analysis

INORGANICS

		LCS	LCS Percent	LCSD	Percent	
Analyte		Conc	Result Recovery		Recovery	RPD
Method: FL-PRO SS C-39	QC Batch: 9808FLRO102	Sample ID: LCS 100.0 mg/kg	Date Prep: 08/28/1998 Date Anal: 08/28/1998 90.0 90	Analyst ELA 91.0	91	1
Method: FL-PRO Total PHS	QC Batch: 9808FLRO102	Sample ID: LCS 5.0 mg/kg	Date Prep: 08/28/1998 Date Anal: 08/28/1998 3.8 76	Analyst: ELA 3.7	74	3

Quality Control Limits

	Lower	Upper		
Analyte	Limit	Limit	RPD	
SS_C-39	0	145	33	
Total PHS	55	110	11	

Quality Control Report for Spike/Spike Duplicate Analysis

INORGANICS

		Spike	Sample	Spike	Percent	MSD	Percent	
Analyte		Amount	Result	Result	Recovery	Result	Recovery	RPD
Method: FL-PRO SS_C-39	QC Batch: 9808FLRO102	Sample ID: 9808142-2 100.0 mg/kg	Date Prep: 08/ 0.0	28/1998 Da 104.0	te Anal: 08/28/1998 104	Analyst EL 103.0	103	1
Method: FL-PRO Total PHS	QC Batch: 9808FLRO102	Sample ID: 9808142-2 5.0 mg/kg	Date Prep: 08/ 0.0	28/1998 Da 4.4	te Anal: 08/28/1998 88	Analyst: EL 4.6	A 92	4

Quality Control Limits

	Lower	Upper	
Analyte	Limit	Limit	RPD
SS_C-39	5	141	33
Total PHS	54	111	12

PC&B Environmental Laboratories, Inc. 210 Park Road

Oviedo, FL 32765 PHONE: 407-359-7194 FAX: 359-7197

Petroleum Hydrocarbons

CLIENT NAME: Tetra Tech NUS, Inc. PROJECT NAME: Truck Fill Stand/NAS Key West PROJECT NUMBER: 7586/CTO-0031

DATE RECEIVED: 08/26/1998 ANALYTICAL PROTOCOL: FL-PRO

'.ab Reference Number :

Client Sample ID : Date Sampled : Date Extracted:

98080182-4 **EQBL** 08/25/1998

08/28/1998 08/28/1998 Water

Date Analyzed : Sample Matrix (as Received): Analysis Confirmed : Dilution Factor :

No

MDL	Analyte	Results/Flag	Units	Analyst
0.1	Total PHS	0.1 U	mg/l	ELA
	(Surr) C-39 (%)	103	%	ELA

U = Undetected. The value preceeding the 'U' is the MDL for the analyte, based on dilution. Results reported on a Wet Weight basis.

FDEP CompQAPP # 900134G - FHRS Certification # E83239/83353

Reviewed by:

Quality Control Report for Method Blank

Petroleum Hydrocarbons

Matrix: Water

Lab Sample ID: RB-08-28-98

QC Batch ID: 9808FLRO099

Result Units: mg/l

Analysis Date: 08/28/1998

Preparation Date: 08/28/1998

Method: FL-PRO

Analyst: ELA

Analyte	Result	Flag	Analyte	Result	Flag
Total PHS	0.1	U	(Surr) C-39 (%)	83.0	

Quality Control Report for LCS/LCS Duplicate Analysis

Petroleum Hydrocarbons

Matrix: Water

Lab Sample ID: LCS

QC Batch ID: 9808FLRO099

LCS Units: mg/l

Analysis Date: 08/28/1998

Preparation Date: 08/28/1998

Method: FL-PRO

Analyst: ELA

	LCS		LCS	LCS Percent	LCSD	LCSD Percent	
Analyte	Conc		Result	Recovery	Result	Recovery	RPD
(Surr) C-39	100.0	0.0	90.0	90	91.0	91	1
Total PHS	5.0	0.0	3.6	72	3.7	74	3

Quality Control Limits

	Lower	Upper	
Analyte	Limit	Limit	RPD
SS_C-39	4	140	31
Total PHS	57	110	11

Quality Control Report for Spike Analysis

Petroleum Hydrocarbons

Matrix: Water

Lab Sample ID: 9808178-1

QC Batch ID: 9808FLRO099

Spike Units: mg/l

Analysis Date: 08/28/1998

Preparation Date: 08/28/1998

Method: FL-PRO

Analyst: ELA

Analyte	Spike Amount	Sample Result	Spike Result	Percent Recovery	Lower Control Limit	Upper Control Limit
(Surr) C-39	100.0	0.0	70.0	70	7	139
Total PHS	5.0	0.0	4.0	80	57	110

PC&B Environmental Laboratories, Inc. 210 Park Road

Oviedo, FL 32765 PHONE: 407-359-7194

Report of Analysis

CLIENT NAME: Tetra Tech NUS, Inc. PROJECT NAME: Truck Fill Stand/NAS Key West PROJECT NUMBER: 7586/CTO-0031 DATE RECEIVED: 08/26/1998

~ Lab Reference Number : lient Sample ID:

98080182-1 A902-SB41-03 08/25/1998

Date Sampled :
Sample Matrix (as Received):

Soil

Method	Parameter	Results/Flag	Units	Analyst	Date Prep	Date Anal	MDL
EPA 415.1	Total Organic Carbon	150	mg/kg	LAB	08/28/1998	08/28/1998	10

U = Undetected. The value preceeding the 'U' is the MDL for the analyte. Results reported on a Wet Weight basis.

FDEP CompQAPP # 900134G - FHRS Certification # E83239/83353

Reviewed by :

210 Park Road Oviedo, FL 32765 PHONE: 407-359-7194 Report of Analysis

CLIENT NAME: Tetra Tech NUS, Inc.

PROJECT NAME: Truck Fill Stand/NAS Key West PROJECT NUMBER: 7586/CTO-0031 DATE RECEIVED: 08/26/1998

Lab Reference Number : Client Sample ID:

98080182-2 A902-SB42-02 08/25/1998

Date Sampled :
Sample Matrix (as Received):

Soil

Method	Parameter	Results/Flag	Units	Analyst	Date Prep	Date Anal	MDL
EPA 415.1	Total Organic Carbon	125	mg/kg	LAB	08/28/1998	08/28/1998	10

U = Undetected. The value preceeding the 'U' is the MDL for the analyte. Results reported on a Wet Weight basis. FDEP CompQAPP # 900134G - FHRS Certification # E83239/83353

210 Park Road Oviedo, FL 32765 PHONE: 407-359-7194

Report of Analysis

CLIENT NAME: Tetra Tech NUS, Inc. PROJECT NAME: Truck Fill Stand/NAS Key West PROJECT NUMBER: 7586/CTO-0031 DATE RECEIVED: 08/26/1998

Lab Reference Number : lient Sample ID :

98080182-3 A902-SB43-02 08/25/1998

Date Sampled : Sample Matrix (as Received):

Soil

Method	Parameter	Results/Flag	Units	Analyst	Date Prep	Date Anal	MDL
EPA 415.1	Total Organic Carbon	96	mg/kg	LAB	08/28/1998	08/28/1998	10

U = Undetected. The value preceeding the 'U' is the MDL for the analyte. Results reported on a Wet Weight basis.

FDEP CompQAPP # 900134G - FHRS Certification # E83239/83353

Reviewed by : _____

10945

PC&B Environmental

210 Park Road, Oviedo, FL 32765 407-359-7194 (FAX) 407-359-7197

Chain of Custody

Work Order: <u>9608/82</u>

WHITE: Project File

YELLOW; Laboral

PINK: Sampler

COMPANY: TETRA **ANALYSIS REQUESTED** ADDRESS: 1311 Executive Center Dr., #220 SAMPLED BY: PHONE: FAX: PRESERVATION WATER SAMPLE ID DATE/TIME A907-SBUZ-02 A902-5643-02 6 8 10 11 12 13 DATE/TIME PROJECT INFORMATION SAMPLE RECEIPT RELINQUISHED BY DATE/TIME: RESEIVED BY **Total # of Containers** Truck Fill Stame PROJECT #: **Chain of Custody Seals** 3: Recv'd in Good Condition PROJECT MANAGER: SPECIAL INSTRUCTIONS/COMMENTS: PO #: INVOICE TO: (IF DIFFERENT FROM ABOVE) QUOTE/CONT' `T#:

210 Park Road, Oviedo, Florida 32765 Phone: 407-359-7194 Fax: 407-359-7197

02-09-1999

Paul Calligan
Tetra Tech NUS, Inc.
1311 Executive Center Drive, Ste. 220
Tallahassee, FL 32301-

Dear Paul Calligan:

Enclosed are the results of the analysis of your samples received 01/29/1999.

Our laboratory is certified by the Florida DHRS (Lab #E83239) and operates under an FDEP approved Comprehensive Quality Assurance Plan (#900134G). Unless otherwise noted, all results are reported as received. All data were determined in accordance with published procedures (EPA-600/4-79-020), Methods for Chemical Analysis of Water and Wastes, Revised March 1983 and/or Standard Methods for the examination of Water and Wastewater, 18th Edition 1989 and/or Test Methods for Evaluating Solid Waste (EPA-SW-846, Revised January 1995), unless stated otherwise in our CompQapp under method modifications.

If you have any questions, please do not hesitate to give me a call.

Sincerely,

Beckie J. Burdick Laboratory Manager

210 Park Road, Oviedo, Florida 32765 Phone: 407-359-7194 Fax: 407-359-7197

Client:

Tetra Tech NUS, Inc.

1311 Executive Center Drive, Ste. 220

Tallahassee, FL 32301-

Contact: Paul Calligan

Phone:

(850) 656-5458

Laboratory Reference Number: 99010242

Project Name : NAS KEY WEST

Project Number:

Sample temperature at time of receipt: 4 degrees C

Chain of Custody: 10107

Laboratory ID	Matrix	Client ID	Status	Date/Time Sampled
99010242-1	Sediment	A902-SD-01	RUN	01/28/1999 15:10
99010242-2	Water	TRIP BLANK	RUN	01/28/1999 15:10

Number	Parameter	Description	
1	FL-PRO	Petroleum Hydrocarbons	
1	EPA 8100	Polynuclear Aromatic Hydrocarbons	
1	EPA 8021	Volatile Organics	
1	EPA 8021	Volatile Organics	
1	EPA 6010	Lead by ICAP	

210 Park Road Oviedo, FL 32765 407-359-7194 - (FAX) 359-7197

Case Narrative

Paul Calligan Tetra Tech NUS, Inc. 1311 Executive Center Drive, Ste. 220 Tallahassee, FL 32301-

CASE NARRATIVE for Work Order: 99010242

Project Number:

Project Name: NAS KEY WEST

This Case Narrative is a summary of events and/or problems encountered with this Work Order.

For samples requesting EPA 601/602/8010/8020/8021 analysis, the GCMS method EPA 624/8260 was substituted in order to generate the highest quality data possible at no additional cost.

Definition of Flags

- No surrogate result due to dilution or matrix interference. Estimated Value, value not accurate.

 Off-scale high. Actual value is greater than value given. Sample held beyond the accepted holding time. DL

- = Value reported is less than the laboratory method detection limit.
 - = Analyte was both detected in the method blank and sample.

QC Batch Summary

Paul Calligan
Tetra Tech NUS, Inc.
1311 Executive Center Drive, Ste. 220
Tallahassee, FL 32301-

QC BATCH SUMMARY for Work Order: 99010242

Project Number:

Project Name: NAS KEY WEST

Method	SubNum	QC Batch
EPA 6010 - Lead by ICAP		
·	-1	9902RC032
FL-PRO - Petroleum Hydro	carbons	
	-1	9902FLRO015
EPA 8100 - Polynuclear Arc	matic Hydroca	rbons
	-1	9902PAH014
EPA 8021 - Volatile Organic	s	
	-1	9901MS2069
EPA 8021 - Volatile Organic	s	
	-2	9901MS2069

PC&B Environmental Laboratories, Inc. 210 Park Road

Oviedo, FL 32765 PHONE: 407-359-7194 FAX: 359-7197

Volatile Organics

CLIENT NAME: Tetra Tech NUS, Inc. PROJECT NAME: NAS KEY WEST PROJECT NUMBER:

DATE RECEIVED: 01/29/1999 ANALYTICAL PROTOCOL: EPA 5035/8021

ab Reference Number:
Client Sample ID:
Date Sampled:
Date Extracted:
Date Analyzed:
Percent Moisture
Sample Matrix (as Received):
Analysis Confirmed:
Dilution Factor:

99010242-1 A902-SD-01 01/28/1999 01/29/1999 01/29/1999 85.1

Sediment GCMS

MDL	Analyte		lts/Flag	Units	Analyst
5	Benzene		U	ug/kg	KN
5	Bromobenzene	34	U	ug/kg	KN
5	Bromochloromethane	34	U	ug/kg	KN
5	Bromodichloromethane	34	U	ug/kg	KN
5	Bromoform	34	U	ug/kg	KN.
5	Bromomethane	34	U	ug/kg	KN
5	n-Butylbenzene	34	U	ug/kg	- KN
5	sec-Butylbenzene	34		ug/kg	KN
5	tert-Butylbenzene	34		ug/kg	KN
5	Carbon tetrachloride	34		ug/kg	KN
5	Chlorobenzene	34		ug/kg	KN
5	Chloroethane	34		ug/kg	KN
5	Chloroform	34			KN
5	Chloromethane	34		ug/kg ug/kg	KN
		34			
5	2-Chlorotoluene			ug/kg	KN
5	4-Chlorotoluene	34		ug/kg	KN
5	Dibromochloromethane	34	_	ug/kg	KN
5	1,2-Dibromoethane	34	-	ug/kg	KN
5	Dibromomethane	34		ug/kg	KN
5	1,2-Dichlorobenzene	34		ug/kg 	KN
5	1,3-Dichlorobenzene	34		ug/kg	KN
5	1,4-Dichlorobenzene	34		ug/kg	KN
5	Dichlorodifluoromethane	34	U	ug/kg	KN
5	1,1-Dichloroethane	34	· U	ug/kg	KN
5	1,2-Dichloroethane	34	· U	ug/kg	KN
5	1,1-Dichloroethene	34	U	ug/kg	KN
5	cis-1,2-Dichloroethene	34	U	ug/kg	KN
5	trans-1,2-Dichloroethene	34	U	ug/kg	KN
5	1,2-Dichloropropane	34	U	ug/kg	KN
5	1,3-Dichloropropane	34	U	ug/kg	KN
5	2,2-Dichloropropane	34	U	ug/kg	KN
5	1,1-Dichloropropene	34	U	ug/kg	, KN
5	Ethylbenzene	34		ug/kg	KN
5	Hexachlorobutadiene	34		ug/kg	KN
5	Isopropylbenzene	34	_	ug/kg	KN
5	p-Isopropyltoluene	34		ug/kg	KN
5	Methylene chloride	34		ug/kg	KN
5	Naphthalene	34		ug/kg	KN
5 5		34			KN
	n-Propylbenzene			ug/kg	
5	Styrene	34	_	ug/kg	KN
5	1,1,1,2-Tetrachioroethane	34		ug/kg	KN
5	1,1,2,2-Tetrachloroethane	34		ug/kg	KN
5	Tetrachloroethene	34		ug/kg	KN
5	Toluene		ŧ U	ug/kg	.KN
5	1,2,3-Trichlorobenzene		4 U	ug/kg	KN
5	1,2,4-Trichlorobenzene	34		ug/kg	KN
5	1,1,1-Trichloroethane		4 U	ug/kg	KN
5	1,1,2-Trichloroethane	34	4 U	ug/kg	KN
5	Trichloroethene	34	4 U	ug/kg	KN
5	Trichlorofluoromethane	34	4 U	ug/kg	KN
5	1,2,3-Trichloropropane	3-	4 U	ug/kg	KN
5	1,2,4-Trimethylbenzene	34		ug/kg	KN
5	1,3,5-Trimethylbenzene	34		ug/kg	KN

210 Park Road Oviedo, FL 32765 PHONE: 407-359-7194 Volatile Organics

CLIENT NAME: Tetra Tech NUS, Inc. PROJECT NAME: NAS KEY WEST

PROJECT NUMBER:

DATE RECEIVED: 01/29/1999

ANALYTICAL PROTOCOL: EPA 5035/8021

FAX: 359-7197 Lab Reference Number:

Client Sample ID: Date Sampled: Date Extracted : Date Analyzed :

99010242-1 A902-SD-01 01/28/1999 01/29/1999 01/29/1999

Percent Moisture Sample Matrix (as Received): Analysis Confirmed : 85.1 Sediment **GCMS**

Dilution Factor:

	MDL Analyte		Results/Flag Units				
5	Vinyl chloride	34 U	ug/kg	KN			
5	m&p-Xylenes	34 U	ug/kg	KN			
5	o-Xylene	34 U	ug/kg	KN			
5	MTBE	34 U	ug/kg	KN			
	(Surr) 1,2-Dichloroethane-d4 (%)	127	%	KN			
	(Surr) Toluene-d8 (%)	132	%	KN			
	(Surr) 4-Bromofluorobenzene (%)	127	%	KN			

210 Park Road Oviedo, FL 32765 PHONE: 407-359-7194 FAX: 359-7197

Volatile Organics

CLIENT NAME: Tetra Tech NUS, Inc. PROJECT NAME: NAS KEY WEST

PROJECT NUMBER:

DATE RECEIVED: 01/29/1999 ANALYTICAL PROTOCOL: EPA 8021

ab Reference Number:

lient Sample ID:

Date Sampled:

Date Extracted:

Date Analyzed:

Sample Matrix (as Received):

Analysis Confirmed:

99010242-2 TRIP BLANK 01/28/1999 01/29/1999 01/29/1999 Water

Anal Dilut

GCMS

alysis Confirmed :	
ution Factor:	

MDL	Analyte	Results/Flag Units	Analyst
1.0	Benzene	1.0 U ug/l	KN
1.0	Bromobenzene	1.0 U ug/l	KN
1.0	Bromochloromethane	1.0 U ug/l	KN
1.0	Bromodichloromethane	1.0 U ug/l	KN
1.0	Bromoform	1.0 U ug/l	KN
1.0	Bromomethane	1.0 U ug/l	KN
1.0	n-Butylbenzene	1.0 U ug/i	KN
1.0	sec-Butylbenzene	1.0 U ug/l	KN
1.0	tert-Butylbenzene	1.0 U ug/l	KN
1.0	Carbon tetrachloride	1.0 U ug/l	KN
1.0	Chlorobenzene	1.0 U ug/i	KN
1.0	Chloroethane	1.0 U ug/l	KN
1.0	Chloroform	1.0 U ug/l	KN
1.0	Chloromethane	1.0 U ug/i	KN
1.0	2-Chlorotoluene	1.0 U ug/l	KN
1.0	4-Chlorotoluene	1.0 U ug/l	KN
1.0	Dibromochloromethane	1.0 U ug/l	KN
1.0	1,2-Dibromoethane	1.0 U ug/l	KN
1.0	Dibromomethane	1.0 U ug/l	KN
1.0	1,2-Dichlorobenzene	1.0 U ug/l	KN
1.0	1,3-Dichlorobenzene	1.0 U ug/l	KN
1.0	1,4-Dichlorobenzene	1.0 U ug/l	KN
1.0	Dichlorodifluoromethane	1.0 U ug/l	KN
1.0	1,1-Dichloroethane	1.0 U ug/l	KN
1.0	1,2-Dichloroethane	1.0 U ug/l	KN
1.0	1,1-Dichloroethene	1.0 U ug/l	KN
1.0	cis-1,2-Dichloroethene	1.0 U ug/l	KN
1.0	trans-1,2-Dichloroethene	1.0 U ug/l	KN
1.0	1,2-Dichloropropane	1.0 U ug/l	KN
1.0	1,3-Dichloropropane	1.0 U ug/l	KN
1.0	2,2-Dichloropropane	1.0 U ug/l	KN
1.0	1,1-Dichloropropene	1.0 U ug/l	KN
1.0	1,3-Dichloropropene (cis)	1.0 U ug/i	. KN
1.0	1,3-Dichloropropene (trans)	1.0 U ug/l	KN
1.0	Ethylbenzene	1.0 U ug/l	KN
1.0	Hexachlorobutadiene	1.0 U ug/l	KN
1.0	Isopropylbenzene	1.0 U ug/l	KN
1.0	p-Isopropyltoluene	1.0 U ug/l	KN
1.0	Methylene chloride	3.4 V ug/l	KN
1.0	Naphthalene	1.0 U ug/l	KN
1.0	n-Propylbenzene	1.0 U ug/l	KN
1.0	Styrene	1.0 U ug/i	KN
1.0	1,1,1,2-Tetrachloroethane	1.0 U ug/l	KN
1.0	1,1,2,2-Tetrachloroethane	1.0 U ug/l	KN
1.0	Tetrachloroethene	1.0 U ug/l	KN
1.0	Toluene	1.0 U ug/l	KN
1.0	1,2,3-Trichlorobenzene	1.0 U ug/l	KN
1.0	1,2,4-Trichlorobenzene	1.0 U ug/l	KN
1.0	1,1,1-Trichloroethane	1.0 U ug/l	KN
1.0	1,1,2-Trichloroethane	1.0 U ug/l	KN
1.0	Trichloroethene	1.0 U ug/l	KN
1.0	Trichlorofluoromethane	1.0 U ug/l	KN
1.0	1,2,3-Trichloropropane	1.0 U ug/i	KN
1.0	1.2.4-Trimethylbenzene	1.0 U ug/l	KN

210 Park Road Oviedo, FL 32765 PHONE: 407-359-7194 Volatile Organics

CLIENT NAME: Tetra Tech NUS, Inc. PROJECT NAME: NAS KEY WEST

PROJECT NUMBER: DATE RECEIVED: 01/29/1999

ANALYTICAL PROTOCOL: EPA 8021

FAX: 359-7197

Lab Reference Number :
Client Sample ID :

Client Sample ID : Date Sampled : Date Extracted : Date Analyzed : 99010242-2 TRIP BLANK 01/28/1999 01/29/1999

Sample Matrix (as Received):
Analysis Confirmed:

01/29/1999 Water GCMS

Dilution Factor :

1

	MDL Analyte		Results/Fla	ag Units	Analyst
1.0	1,3,5-Trimethylbenzene	1.0 ປ	ug/i	KN	
1.0	Vinyl chloride	1.0 U	ug/i	KN	
1.0	MTBE	1.0 U	ug/l	KN	
1.0	o-Xylene	1.0 U	ug/l	KN	
1.0	m-Xylene	1.0 U	ug/l	KN	
1.0	p-Xylene	1.0 U	ug/l	KN	
	(Surr) 1,2-Dichloroethane-d4 (%)	111	%	KN	
	(Surr) Toluene-d8 (%)	111	%	KN	
	(Surr) 4-Bromofluorobenzene (%)	141	%	KN	

U = Undetected. The value preceeding the 'U' is the MDL for the analyte, based on dilution. Results reported on a Wet Weight basis.

Reviewed by :

Quality Control Report for Spike/Spike Duplicate Analysis

Volatile Organics

Matrix: Soil

Lab Sample ID: 9901213-2 QC Batch ID: 9901MS2069

Spike Units: ug/kg

Analysis Date: 01/29/1999 Preparation Date: 01/29/1999

Method: EPA 8021

Analyst: KN

Analyte	Spike Amount	Sample Result	Spike Result	Spike Percent Recovery	MSD Result	MSD Percent Recovery	RPD
Benzene	50	0	55	110	53	106	4
Carbon tetrachloride	50	0	50	100	50	100	0
Chlorobenzene	50	0	52	104	52	104	0
1.4-Dichlorobenzene	50	0	51	102	52	104	2
1.1-Dichloroethene	50	0	56	112	53	106	6
Ethylbenzene	50	0	49	98	50	100	2
Toluene	50	0	46	92	45	90	2
Trichloroethene	50	0	52	104	54	108	4

Quality Control Limits

•	Lower	Upper		
Analyte	Limit	Limit	RPD	
Benzene	59	144	18	
Carbon tetrachloride	49	148	15	
Chlorobenzene	67	130	18	
1,4-Dichlorobenzene	56	141	18	
1,1-Dichloroethene	52	150	18	
Ethylbenzene	42	157	19	
Toluene	54	136	19	
Trichloroethene	59	160	18	

Quality Control Report for Method Blank

Volatile Organics

Matrix: Soil

Lab Sample ID: RB-1-29-99 QC Batch ID: 9901MS2069

Result Units: ug/kg

Analysis Date: 01/29/1999

Preparation Date: 01/29/1999

Method: EPA 8021

Analyst: KN

Analyte	Result	Flag	Analyte	Result	Flag
Benzene	5	U	Bromobenzene	5	U
Bromochloromethane	5	U	Bromodichloromethane	5	U
Bromoform	5	U	Bromomethane	5	U
n-Butylbenzene	5	U	sec-Butylbenzene	5	U
tert-Butylbenzene	5	U	Carbon tetrachloride	5	U
Chlorobenzene	5	U	Chloroethane	5	U
Chloroform	5	U	Chloromethane	5	U
2-Chlorotoluene	5	U	4-Chlorotoluene	5	U
Dibromochloromethane	5	U	1,2-Dibromoethane	5	U
Dibromomethane	5	U	1,2-Dichlorobenzene	5	U
1,3-Dichlorobenzene	5	U	1,4-Dichlorobenzene	5	U
Dichlorodifluoromethane	5	U	1,1-Dichloroethane	5	U
1,2-Dichloroethane	5	U	1,1-Dichloroethene	5	U
cis-1,2-Dichloroethene	5	U	trans-1,2-Dichloroethene	5	U
1,2-Dichloropropane	5	U	1,3-Dichloropropane	5	U
2,2-Dichloropropane	5	U	1,1-Dichloropropene	5	U
Ethylbenzene	5	U	Hexachlorobutadiene	5	U
Isopropylbenzene	5	U	p-Isopropyitoluene	5	U
Methylene chloride	31	V	Naphthalene	5	U
n-Propylbenzene	5	U	Styrene	5	U
1,1,1,2-Tetrachloroethane	5	U	1,1,2,2-Tetrachloroethane	5	U
Tetrachloroethene	5	U	Toluene	5	U
1,2,3-Trichlorobenzene	5	U	1,2,4-Trichlorobenzene	5	U
1,1,1-Trichloroethane	5	U	1,1,2-Trichloroethane	5	U
Trichloroethene	5	U	Trichlorofluoromethane	5	U
1,2,3-Trichloropropane	5	U	1,2,4-Trimethylbenzene	5	U
1,3,5-Trimethylbenzene	5	U	Vinyl chloride	5	U
m&p-Xylenes	5	U	o-Xylene	5	U
MTBE	5	U	(Surr) 1,2-Dichloroethane-d4 (%)	130	
(Surr) Toluene-d8 (%)	124		(Surr) 4-Bromofluorobenzene (%)	125	

Quality Control Report for LCS Analysis

Volatile Organics

Matrix: Soil

Lab Sample ID: LCS

QC Batch ID: 9901MS2069

LCS Units: ug/kg

Analysis Date: 01/29/1999

Preparation Date: 01/29/1999

Method: EPA 8021

Analyst: KN

Analyte	LCS Conc	LCS Result	Percent Recovery	Lower Control Limit	Upper Control Limit
Benzene	50	55	110	69	139
Carbon tetrachloride	50	50	100	64	134
Chlorobenzene	50	53	106	77	127
1.4-Dichlorobenzene	50	54	108	80	125
1.1-Dichloroethene	50	52	104	64	137
Ethylbenzene	50	48	96	66	128
Toluene	50	46	92	65	135
Trichloroethene	50	51	102	69	136

210 Park Road Oviedo, FL 32765 PHONE: 407-359-7194 FAX: 359-7197 Polynuclear Aromatic Hydrocarb

CLIENT NAME: Tetra Tech NUS, Inc. PROJECT NAME: NAS KEY WEST PROJECT NUMBER:

DATE RECEIVED: 01/29/1999 ANALYTICAL PROTOCOL: EPA 8100

Lab Reference Number :

Client Sample ID: Date Sampled: Date Extracted : Date Analyzed : Percent Moisture

99010242-1 A902-SD-01 01/28/1999 02/03/1999 02/03/1999 85.1 Sediment

Sample Matrix (as Received): Analysis Confirmed:

Dilution Factor:

No

MDL	Analyte	Results/Flag	Units	Analyst
100	Acenaphthene	670 U	ug/kg	VLC
100	Acenaphthylene	670 U	ug/kg	VLC
100	Anthracene	670 U	ug/kg	VLC
100	Benzo(a)anthracene	670 U	ug/kg	VLC
100	Benzo(a)pyrene	670 U	ug/kg	VLC
100	Benzo(b)fluoranthene	670 U	ug/kg	VLC
100	Benzo(ghi)perylene	670 U	ug/kg	VLC
100	Benzo(k)fluoranthene	670 U	ug/kg	VLC
100	Chrysene	670 U	ug/kg	VLC
100	Dibenzo(ah)anthracene	670 U	ug/kg	VLC
100	Fluoranthene	670 U	ug/kg	VLC
100	Fluorene	670 U	ug/kg	VLC
100	Indeno(123-cd)pyrene	670 U	ug/kg	VLC
100	Naphthalene	670 U	ug/kg	VLC
100	1-Methyl naphthalene	670 U	ug/kg	VLC
100	2-Methyl naphthalene	670 U	ug/kg	VLC
100	Phenanthrene	670 U	ug/kg	VLC
100	Pyrene	670 U	ug/kg	VLC
	(Surr) 2-Fluorobiphenyl (%)	72	%	VLC

Quality Control Report for Spike Analysis

Polynuclear Aromatic Hydrocarbons

Matrix: Soil

Lab Sample ID: 9901227-10 QC Batch ID: 9902PAH014

Spike Units: ug/kg

Analysis Date: 02/03/1999

Preparation Date: 02/03/1999

Method: EPA 8100

Analyst: VLC

Analyte	Spike Amount	Sample Result	Spike Result	Percent Recovery	Lower Control Limit	Upper Control Limit
(Surr) 2-Fluorobiphenyl	100	0	82	82	45	120
Acenaphthene	50	0	35	71	46	125
Acenaphthylene	50	0	36	71	42	105
Anthracene	50	0	37	74	53	132
Benzo(a)anthracene	50	0	36	72	41	128
Benzo(a)pyrene	50	0	33	66	45	125
Benzo(b)fluoranthene	50	0	29	58	44	125
Benzo(ghi)perylene	50	0	38	77	37	132
Benzo(k)fluoranthene	50	0	28	56	44	126
Chrysene	50	0	34	67	48	125
Dibenzo(ah)anthracene	50	0	45	89	39	123
Fluoranthene	50	0	36	73	49	118
Fluorene	50	0	37	75	44	112
Indeno(123-cd)pyrene	50	0	42	85	36	124
Naphthalene	50	0	37	73	38	102
Phenanthrene	50	0	38	75	45	118
Pyrene	50	0	37	74	49	120

Quality Control Report for LCS Analysis

Polynuclear Aromatic Hydrocarbons

Matrix: Soil

Lab Sample ID: LCS

QC Batch ID: 9902PAH014

LCS Units: ug/kg

Analysis Date: 02/03/1999

Preparation Date: 02/03/1999

Method: EPA 8100

Analyst: VLC

				Lower	Upper
	LCS	LCS	Percent	Control	Control
Analyte	Conc	Result	Recovery	Limit	Limit
(Surr) 2-Fluorobiphenyl	100	78	78	51	100
Acenaphthene	50	36	71	62	125
Acenaphthylene	. 50	36	71	55	100
Anthracene	50	38	76	64	128
Benzo(a)anthracene	50	34	68	54	110
Benzo(a)pyrene	50	29	59	56	114
Benzo(b)fluoranthene	50	29	58	53	119
Benzo(ghi)perylene	50	32	64	50	112
Benzo(k)fluoranthene	50	29	58	53	119
Chrysene	50	32	63	53	114
Dibenzo(ah)anthracene	50	29	57	51	116
Fluoranthene	50	37	73	58	110
Fluorene	50	37	74	54	107
Indeno(123-cd)pyrene	50	28	56	51	115
Naphthalene	50	36	72	53	94
Phenanthrene	50	38	75	53	112
Pyrene	50	36	73	60	111

210 Park Road Oviedo, FL 32765 PHONE: 407-359-7194 FAX: 359-7197

ab Reference Number:

Petroleum Hydrocarbons

CLIENT NAME: Tetra Tech NUS, Inc. PROJECT NAME: NAS KEY WEST

PROJECT NUMBER:

DATE RECEIVED: 01/29/1999 ANALYTICAL PROTOCOL: FL-PRO

Date Sampled: Date Extracted :

Date Analyzed:

Percent Moisture

Slient Sample ID :

99010242-1 A902-SD-01 01/28/1999 02/03/1999

Sample Matrix (as Received): Analysis Confirmed:

Dilution Factor:

02/03/1999 85.1 Sediment No

Results/Flag Units MDL Analyte Analyst 4.0 Total PHS 160 mg/kg SGA SGA 89 % (Surr) C-39 (%)

U = Undetected. The value preceeding the 'U' is the MDL for the analyte, based on dilution. Results reported on a Dry Weight basis. FDEP CompQAPP # 900134G - FHRS Certification # E83239/83353

Reviewed by:

PC&B Environmental Laboratories, Inc. 210 Park Road

Oviedo, FL 32765 PHONE: 407-359-7194

Report of Analysis

CLIENT NAME: Tetra Tech NUS, Inc. PROJECT NAME: NAS KEY WEST PROJECT NUMBER:

DATE RECEIVED: 01/29/1999

Lab Reference Number : Client Sample ID : Date Sampled : Percent Moisture

Sample Matrix (as Received):

99010242-1 A902-SD-01 01/28/1999

85.1 Sediment

Method	Parameter	Results/Flag	Units	Analyst	Date Prep	Date Anal	MDL
EPA 6010	Lead, Total	625	mg/kg	GG	02/03/1999	02/04/1999	0.3

U = Undetected. The value preceeding the 'U' is the MDL for the analyte. Results reported on a Dry Weight basis (where applicable).

FDEP CompQAPP # 900134G - FHRS Certification # E83239/83353

Reviewed by :

Quality Control Report for Spike Analysis

INORGANICS

	Analyte		Spike Amount	Sample Result	Spike Result	Percent Recovery	Lower Control Limit	Upper Control Limit
. '	Method: EPA 6010A Lead, Total	QC Batch: 9902RC032	Sample ID: 9902013-11 10.0 mg/kg	Date Prep: 02/0 2.8	03/1999 Da 12.1	te Anal: 02/04/1999 93	Analyst GG 66	123
	Method: FL-PRO SS_C-39	QC Batch: 9902FLRO015	Sample ID: 9901227-10 100.0 mg/kg	Date Prep: 02/0 0.0	03/1999 Da 116.0	te Anal: 02/03/1999 116	Analyst: SGA 5	150
	Method: FL-PRO Total PHS	QC Batch: 9902FLRO015	Sample ID: 9901227-10 5.0 mg/kg	Date Prep: 02/0 0.0	3.1999 Da 3.8	te Anal: 02/03/1999 76	Analyst SGA 54	111

Quality Control Report for LCS/LCS Duplicate Analysis

INORGANICS

		LCS	LCS Percent	LCSD	Percent	
Analyte		Conc	Result Recovery	Result	Recovery	RPD
Method: FL-PRO SS_C-39	QC Batch: 9902FLRO015	Sample ID: LCS 100.0 mg/kg	Date Prep: 02/03/1999 Date Anal: 02/03/1999 122.0 122	Analyst: S0 121.0	121	. 1
Method: FL-PRO Total PHS	QC Batch: 9902FLRO015	Sample ID: LCS 50.0 mg/kg	Date Prep: 02/03/1999 Date Anal: 02/03/1999 32.2 64	Analyst: S0 33,5	67	4

Quality Control Limits

	Lower	Upper			
Analyte	Limit	Limit	RPD		
SS_C-39	0	145	33		
Total PHS	55	110	11		

Quality Control Report for LCS Analysis

INORGANICS

					Lower	Upper
		LCS	LCS	Percent	Control	Control
Analyte		Conc	Result	Recovery	Limit	Limit
Method: EPA 6010A Lead, Total	QC Batch: 9902RC032	Sample ID: LCS 10.0 mg/kg	Date Prep: 02/03/1999 Da 0.0 10.2	ite Anal: 02/04/1999 102	Analyst GG 77	124

10107

PC&B Environmental

210 Park Road, Oviedo, FL 32765 407-359-7194 (FAX) 407-359-7197

Chain of Custody

Work Order:____

	359-7194 (FAX)		197			L					···					Date:	1/2	8/9	1	Page	₃	of	L
COMP	ANY: TETRA TECHNI	JS												ANALY	SIS REQ	UESTE	n.						\neg
ADDRE	iss: 1311 Exelut	TVE CEN	JTER!	R		ahos	see.				SORE	9											
	ELLIG BULDI EDBY: E. HAKRIGON	NG 5017 SIGN:	12 /1.1	Ha	H.	32 ~	 	1208	3.10	73%,7	VOCS-BYORE	8											of Containers
PHON	850-656-545	G FAX:	880-1	25	6-	740	3	8	∞	Checo	S	15										Î	o Č
#	SAMPLE ID	DATE/	TIME	AIR	WATER TER	SULVEGE XX	ORG. LIQUED	/				,		P	RESERVAT	IDN							Number
1	A902-60-01	1/28/99/	15:1D			У		$\sqrt{}$	V	V	V	J											4
2	TELP BLANK	' ' '		L																		\Box	
3																			•				
4																							
5								· · · · · · · · · · · · · · · · · · ·											,				
6						_											·						
7																	<u> </u>						
8				<u> </u>																			
9				L						ļ			ļ		ļ				ļ				
10				<u> </u>						ļ				-		ļ	ļ	ļ	<u> </u>				
11				L						-						<u> </u>				<u> </u>			
12				<u> </u>											ļ	<u> </u>			ļ	ļ			
13			g	L				<u> </u>						<u> </u>			<u> </u>		<u></u>				
RELI	NQUISHED BY	DATE/TIME	RECEIVE 1:	D B	Υ	,	-		DATE/	TIME	PROJEC	T NAME:			ORMATI				otal # of		RECEIPT		1
$\square \mathcal{U}$	en he	1/27/19	1:	4:	4	e.	~	1/3	18/9	7	PROJEC*	NA	5 K E	yu	UE37				ntai # Oi	Contail		+-	
2: /	1 Ordans	1/28/99		′					·		PROJEC	· #.		•				Ch	nain of C	Custody	Seals		
3:	DC/ VIIII	1-1-1	3:				-				SITE ADD	PRESS:	_ F10	L 5	MY	BU	DG A9	OZ Re	cv'd in	Good C	ondition		
SPECI	al instructions/comments: MKKING # - 8052	205-17	501								PROJEC	T MANAG	ER:		164	٠,		1) #:				
74	inchine 4 - 8020	7 -7 1 6	,								INVOIC	E TO:											
																-							
														<u>.</u>									
QUO	TE/CON T#:															WH	ITF: Project	t File	YELLOW:	Labora	PINK: S	ampier	

210 Park Road, Oviedo, Florida 32765 Phone: 407-359-7194 Fax: 407-359-7197

02-17-1999

Paul Calligan
Tetra Tech NUS, Inc.
1311 Executive Center Drive, Ste. 220
Tallahassee, FL 32301-

Dear Paul Calligan:

Enclosed are the results of the analysis of your samples received 02/02/1999.

Our laboratory is certified by the Florida DHRS (Lab #E83239) and operates under an FDEP approved Comprehensive Quality Assurance Plan (#900134G). Unless otherwise noted, all results are reported as received. All data were determined in accordance with published procedures (EPA-600/4-79-020), Methods for Chemical Analysis of Water and Wastes, Revised March 1983 and/or Standard Methods for the examination of Water and Wastewater, 18th Edition 1989 and/or Test Methods for Evaluating Solid Waste (EPA-SW-846, Revised January 1995), unless stated otherwise in our CompQapp under method modifications.

If you have any questions, please do not hesitate to give me a call.

Sincerely,

Beckie/J. Bürdick Laboratory Manager

210 Park Road, Oviedo, Florida 32765 Phone: 407-359-7194 Fax: 407-359-7197

Client:

Tetra Tech NUS, Inc.

1311 Executive Center Drive, Ste. 220

Tallahassee, FL 32301-

Contact: Paul Calligan

Phone:

(850) 656-5458

Laboratory Reference Number: 99020016

Project Name: NAS Key West

Project Number:

Chain of Custody:

Sample temperature at time of receipt: 4 degrees C

Laboratory ID	Matrix	Client ID	Status	Date/Time Sampled
99020016-1	Water	A902-RB-01	RUN	02/01/1999 11:20

Number	Parameter	Description
1	EPA 504	EDB/DBCP
1	EPA 8310	PAH's by HPLC
1	FL-PRO	Petroleum Hydrocarbons
1	EPA 8021	Volatile Organics
1	EPA 6010	Lead by ICAP

210 Park Road Oviedo, FL 32765 407-359-7194 - (FAX) 359-7197

Case Narrative

Paul Calligan Tetra Tech NUS, Inc. 1311 Executive Center Drive, Ste. 220 Tallahassee, FL 32301-

CASE NARRATIVE for Work Order: 99020016

Project Number:

Project Name: NAS Key West

This Case Narrative is a summary of events and/or problems encountered with this Work Order.

For samples requesting EPA 601/602/8010/8020/8021 analysis, the GCMS method EPA 624/8260 was substituted in order to generate the highest quality data possible at no additional cost.

Definition of Flags

- No surrogate result due to dilution or matrix interference.
 - Estimated Value, value not accurate.
- Off-scale high. Actual value is greater than value given.
 Sample held beyond the accepted holding time.
 Value reported is less than the laboratory method detection limit. Q T
- Analyte was both detected in the method blank and sample.

210 Park Road, Oviedo, Florida 32765 Phone: 407-359-7194 Fax: 407-359-7197

QC Batch Summary

Paul Calligan
Tetra Tech NUS, Inc.
1311 Executive Center Drive, Ste. 220
Tallahassee, FL 32301-

QC BATCH SUMMARY for Work Order: 99020016

Project Number:

Project Name: NAS Key West

Method	SubNum	QC Batch	
EPA 504 - EDB/DBCP			
	-1	9902EDB002	
EPA 6010 - Lead by ICAP	-1	9902RC022	
EPA 8310 - PAH's by HPLC	-1	3302110022	
	-1	9902PAH025	
FL-PRO - Petroleum Hydrocarbo			
	-1	9902FLRO013	
EPA 8021 - Volatile Organics	-1	9902MS1005	

PC&B Environmental Laboratories, Inc. 210 Park Road Oviedo, FL 32765 PHONE: 407-359-7194 FAX: 359-7197

Lab Reference Number :

Client Sample ID :
Date Sampled :
Date Extracted :

Date Analyzed:

Volatile Organics

CLIENT NAME: Tetra Tech NUS, Inc. PROJECT NAME: NAS Key West PROJECT NUMBER: DATE RECEIVED: 02/02/1999 ANALYTICAL PROTOCOL: EPA 8021

99020016-1 A902-RB-01 02/01/1999 02/02/1999 02/02/1999

Sample Matrix (as Received): Analysis Confirmed : Dilution Factor :	Water GCMS 1			
MDL	Analyte	Results/Flag	Units	Analyst
1.0	Benzene	1.0 U	ug/l	KN
1.0	Bromobenzene	1.0 U	ug/l	KN
1.0	Bromochloromethane	1.0 U	ug/l	KN
1.0	Bromodichloromethane	1.0 U	ug/l	KN
1.0	Bromoform	1.0 U	ug/i	KN
1.0	Bromomethane	1.0 U	ug/l	KN
1.0	n-Butylbenzene	1.0 U	ug/l	KN
1.0	sec-Butylbenzene	1.0 U	ug/l	KN
1.0	tert-Butylbenzene	1.0 U	ug/l	KN
1.0	Carbon tetrachloride	1.0 U	ug/l	KN
1.0	Chlorobenzene	1.0 U	ug/l	KN
1.0	Chloroethane	1.0 U	ug/l	KN
1.0	Chloroform	1.0 U	ug/l	KN
1.0	Chloromethane	1.0 U	ug/l	KN .
1.0	2-Chlorotoluene	1.0 U	ug/l	KN
1.0	4-Chlorotoluene	1.0 U	ug/l	KN
1.0	Dibromochloromethane	1.0 U	ug/l	KN
1.0	1,2-Dibromoethane	1.0 U	ug/l	KN
1.0	Dibromomethane	1.0 U	ug/l	KN
1.0	1,2-Dichlorobenzene	1.0 U	ug/l	KN
1.0	1,3-Dichlorobenzene	1.0 U	ug/l	KN
1.0	1,4-Dichlorobenzene	1.0 U	ug/l	KN
1.0	Dichlorodifluoromethane	1.0 U	ug/l	KN
1.0	1,1-Dichloroethane	1.0 U	ug/l	KN

1.0	Bromobenzene	1.0 0	ug/i	KN
1.0	Bromochloromethane	1.0 U	ug/l	KN
1.0	Bromodichloromethane	1.0 U	ug/l	KN
1.0	Bromoform	1.0 U	ug/i	KN
1.0	Bromomethane	1.0 U	ug/l	KN
1.0	n-Butylbenzene	1.0 U	ug/l	KN
1.0	sec-Butylbenzene	1.0 U	ug/l	KN
1.0	tert-Butylbenzene	1.0 U	ug/l	KN
1.0	Carbon tetrachloride	1,0 U	ug/l	KN
1.0	Chlorobenzene	1.0 U	ug/l	KN
1.0	Chloroethane	1.0 U	ug/l	KN
1.0	Chloroform	1.0 U	ug/l	KN
1.0	Chloromethane	1.0 U	ug/l	KN .
1.0	2-Chlorotoluene	1.0 U	ug/l	KN
1.0	4-Chlorotoluene	1.0 U	ug/l	KN
1.0	Dibromochloromethane	1.0 U	ug/l	KN
1.0	1,2-Dibromoethane	1.0 U	ug/l	KN
1.0	Dibromomethane	1.0 U	ug/i	KN
1.0	1,2-Dichlorobenzene	1.0 U	ug/l	KN
1.0	1,3-Dichlorobenzene	1.0 U	ug/l	KN
1.0	1,4-Dichlorobenzene	1.0 U	ug/l	KN
1.0	Dichlorodifluoromethane	1.0 U	ug/l	KN
1.0	1,1-Dichloroethane	1.0 U	ug/i	KN
1.0	1,2-Dichloroethane	1.0 U	ug/l	KN
1.0	1,1-Dichloroethene	1.0 U	ug/l	KN
1.0	cis-1,2-Dichloroethene	1.0 U	ug/l	KN
1.0	trans-1,2-Dichloroethene	1.0 U	ug/l	KN
1.0	1,2-Dichloropropane	1.0 U	ug/l	KN
1.0	1,3-Dichloropropane	1.0 U	ug/l	KN
1.0	2,2-Dichloropropane	1.0 U	ug/l	KN
1.0	1,1-Dichloropropene	1.0 U	ug/l	KN
1.0	1,3-Dichloropropene (cis)	1.0 U	ug/l	KN
1.0	1,3-Dichloropropene (trans)	1.0 U	ug/i	KN
1.0	Ethylbenzene	1.0 U	ug/l	KN
1.0	Hexachlorobutadiene	1.0 U	ug/l	KN
1.0	Isopropylbenzene	1.0 U	ug/l	KN
1.0	p-Isopropyltoluene	1.0 U	ug/i	KN
1.0	Methylene chloride	3.7 V	ug/l	KN
1.0	Naphthalene	1.0 U	ug/l	KN
1.0	1.7	1.0 U	ug/i	KN
1.0		1.0 U	ug/l	KN
1.0 1.0		1.0 U	- 0	KN
1.0		1.0 U 1.0 U	•	KN KN
1.0		1.0 U	ug/l	KN KN
1.0		1.0 U	ug/l	KN
1.0	• •	1.0 U	ug/l	KN KN
1.0	• •	1.0 U	ug/l	KN KN
1.0	• •	1.0 U	•	
1.0				KN
1.0		1.0 U 1.0 U	•	KN KN
1.0		1.0 U 1.0 U		KN KN
1.0	1,2,4-Trimethylbenzene	1.0 U	- 3	KN KN
	1,2, T I IIII CHI YIDCI ZENC	1.0 0	ug/l	NY

210 Park Road Oviedo, FL 32765 PHONE: 407-359-7194 FAX: 359-7197 Volatile Organics

CLIENT NAME: Tetra Tech NUS, Inc. PROJECT NAME: NAS Key West

PROJECT NUMBER:

DATE RECEIVED: 02/02/1999 **ANALYTICAL PROTOCOL: EPA 8021**

Lab Reference Number: Client Sample ID : Date Sampled : Date Extracted: Date Analyzed:

99020016-1 A902-RB-01 02/01/1999 02/02/1999 02/02/1999

Sample Matrix (as Received):

Analysis Confirmed : Dilution Factor :

Water **GCMS**

	MDL Analyte		Results/Fla	g Units	Analyst
1.0	1,3,5-Trimethylbenzene	1.0 U	ug/l	KN	
1.0	Vinyl chloride	1.0 U	ug/l	KN	
1.0	MTBE	1.0 U	ug/i	KN	
1.0	o-Xylene	1.0 U	ug/l	KN	
1.0	m-Xylene	1.0 U	ug/l	KN	
1.0	p-Xylene	1.0 U	ug/l	KN	
	(Surr) 1,2-Dichloroethane-d4 (%)	99	%	KN	
	(Surr) Toluene-d8 (%)	86	%	KN	
	(Surr) 4-Bromofluorobenzene (%)	122	%	KN	

Quality Control Report for Spike Analysis

Volatile Organics

Matrix: Water

Lab Sample ID: 99020016-1

QC Batch ID: 9902MS1005

Spike Units: ug/l

Analysis Date: 02/02/1999

Preparation Date: 02/02/1999

Method: EPA 8021

Analyst: KN

Analyte	Spike Amount	Sample Result	Spike Result	Percent Recovery	Lower Control Limit	Upper Control Limit
Benzene	50.0	0.0	54.0	108	57	146
Carbon tetrachloride	50.0	0.0	46.0	92	67	135
Chlorobenzene	50.0	0.0	51.0	102	67	128
1,4-Dichlorobenzene	50.0	0.0	50.0	100	72	134
1,1-Dichloroethene	50.0	0.0	49.0	98	70	125
Ethylbenzene	50.0	0.0	51.0	102	75	127
Toluene	50.0	0.0	49.0	98	64	131
Trichloroethene	50.0	0.0	56.0	112	75	122
m-Xylene	50.0	0.0	46.0	92	68	133

Quality Control Report for LCS Analysis

Volatile Organics

Matrix: Water

Lab Sample ID: LCS

QC Batch ID: 9902MS1005

LCS Units: ug/l

Analysis Date: 02/02/1999

Preparation Date: 02/02/1999

Method: EPA 8021

Analyst: KN

	LCS	LCS	Percent	Lower Control	Upper Control
Analyte	Conc	Result	Recovery	Limit	Limit
Benzene	20.0	24.0	120	75	120
Carbon tetrachloride	20.0	22.0	110	75	120
Chlorobenzene	20.0	22.0	110	75	120
1,4-Dichlorobenzene	20.0	19.0	95	75	120
1,1-Dichloroethene	20.0	19.0	95	75	120
Ethylbenzene	20.0	19.0	95	75	120
Toluene	20.0	24.0	120	75	120
Trichloroethene	20.0	21.0	105	75	120
m-Xylene	40.0	48.0	120	75	120

210 Park Road

Oviedo, FL 32765 PHONE: 407-359-7194

FAX: 359-7197

PAH's by HPLC

CLIENT NAME: Tetra Tech NUS, Inc. PROJECT NAME: NAS Key West

PROJECT NUMBER:

DATE RECEIVED: 02/02/1999 **ANALYTICAL PROTOCOL: EPA 8310**

Lab Reference Number : Client Sample ID:

Date Sampled: Date Extracted: Date Analyzed:

99020016-1 A902-RB-01 02/01/1999 02/05/1999 02/05/1999

Sample Matrix (as Received):

Water No

Analysis Confirmed : Dilution Factor :

MDL	Analyte	Results/Flag	Units	Analyst
.5	Acenaphthene	5 U	ug/l	ELA
·5	Acenaphthylene	5 U	ug/l	ELA
5	Anthracene	5 U	ug/l	ELA
0.2	Benzo(a)anthracene	0.2 U	ug/l	ELA
0.25	Benzo(a)pyrene	0.25 U	ug/l	ELA
0.2	Benzo(b)fluoranthene	0.2 U	ug/l	ELA
0.2	Benzo(ghi)perylene	0.2 U	ug/l	ELA
0.25	Benzo(k)fluoranthene	0.25 U	ug/l	ELA
0.01	Chrysene	0.01 U	ug/l	ELA
0.2	dibenzo(ah)anthracene	0.2 U	ug/l	ELA
0.01	Fluoranthene	0.01 Ü	ug/l	ELA
0.01	Fluorene	2.04	ug/l	ELA
0.10	Indeno(123cd)pyrene	0.10 U	ug/i	ELA
0.05	Naphthalene	2.73	ug/l	ELA
0.05	1-Methyl naphthalene	2.08	ug/l	ELA
0.05	2-Methyl naphthalene	1.69	ug/l	ELA
0.025	Phenanthrene	0.033	ug/l	ELA
0.025	Pyrene	0.025 U	ug/l	ELA

Quality Control Report for LCS Analysis

PAH's by HPLC

Matrix: Water

Lab Sample ID: LCS

QC Batch ID: 9902PAH025

LCS Units: ug/l

Analysis Date: 02/05/1999

Preparation Date: 02/05/1999

Method: EPA 8310

Analyst: ELA

	1.00	1.00	D4	Lower	Upper
	LCS	LCS	Percent	Control	Control
Analyte	Conc	Result	Recovery	Limit	Limit
Acenaphthene	50.0	40.7	81	60	120
Acenaphthylene	25.0	20.2	81	60	120
Anthracene	1.0	0.9	91	60	120
Benzo(a)anthracene	2.5	2.2	87	60	120
Benzo(a)pyrene	2.5	2.2	89	60	120
Benzo(b)fluoranthene	1.0	0.9	87	60	120
Benzo(ghi)perylene	4.0	3.5	87	60	120
Benzo(k)fluoranthene	1.0	0.9	88	60	120
Chrysene	2.5	2.3	90	60	120
dibenzo(ah)anthracene	10.0	8.9	89	60	120
Fluoranthene	2.5	2.1	86	60	120
Fluorene	5.0	4.1	81	60	120
Indeno(123cd)pyrene	2.5	2.4	95	60	120
Naphthalene	25.0	19.4	77	60	120
Phenanthrene	2.0	1.7	85	60	120
Pyrene	5.0	4.2	84	60	120

Quality Control Report for Spike Analysis

PAH's by HPLC

Matrix: Water

Lab Sample ID: 991244-1

QC Batch ID: 9902PAH025

Spike Units: ug/l

Analysis Date: 02/05/1999

Preparation Date: 02/05/1999

Method: EPA 8310

Analyst: ELA

Analyte	Spike Amount	Sample Result	Spike Result	Percent Recovery	Lower Control Limit	Upper Control Limit
Acenaphthene	50.0	0.0	38.4	77	45	133
Acenaphthylene	25.0	0.0	19.1	77	45 45	133
• •						
Anthracene	1.0	0.0	0.9	88	45	133
Benzo(a)anthracene	2.5	0.0	2.2	87	45	133
Benzo(a)pyrene	2.5	0.0	2.3	90	45	133
Benzo(b)fluoranthene	1.0	0.0	0.9	88	45	133
Benzo(ghi)perylene	4.0	0.0	3.5	87	45	133
Benzo(k)fluoranthene	1,0	0.0	0.9	88	45	133
Chrysene	2.5	0.0	2.3	90	45	133
dibenzo(ah)anthracene	10.0	0.0	8.9	89	45	160
Fluoranthene	2.5	0.0	2.1	86	45	133
Fluorene	5.0	0.0	3.9	78	45	133
Indeno(123cd)pyrene	2.5	0.0	2.4	94	45	133
Naphthalene	25.0	0.0	18.4	74	45	133
Phenanthrene	2.0	0.0	1.6	82	45	133
Pyrene	5.0	0.0	4.2	83	45	133

210 Park Road Oviedo, FL 32765 PHONE: 407-359-7194 EDB/DBCP

CLIENT NAME: Tetra Tech NUS, Inc. PROJECT NAME: NAS Key West

PROJECT NUMBER:

DATE RECEIVED: 02/02/1999 **ANALYTICAL PROTOCOL: EPA 504**

FAX: 359-7197 Lab Reference Number:

Client Sample ID: Date Sampled: Date Extracted: Date Analyzed:

Dilution Factor:

99020016-1 A902-RB-01 02/01/1999

02/12/1999

Sample Matrix (as Received): Analysis Confirmed:

02/15/1999 Water No

MDL Results/Flag Analyte Units Analyst Ethylene dibromide (EDB) 0.02 0.02 U SGA ug/l 1,2-Dibromo-3-chloropropane 0.1 U 0.1 ug/l SGA

Quality Control Report for LCS Analysis

EDB/DBCP

Matrix: Water

Lab Sample ID: LCS

QC Batch ID: 9902EDB002

LCS Units: ug/l

Analysis Date: 02/15/1999

Preparation Date: 02/12/1999

Method: EPA 504

Analyst: SGA

Analyte	LCS Conc	LCS Result	Percent Recovery	Lower Control Limit	Upper Control Limit
Ethylene dibromide (EDB)	0.10	0.10	101	75	120
1,2-Dibromo-3-chloropropane	0.1	0.1	104	75	120

Quality Control Report for Spike Analysis

EDB/DBCP

Matrix: Water

Lab Sample ID: 9902016-1

QC Batch ID: 9902EDB002

Spike Units: ug/l

Analysis Date: 02/15/1999

Preparation Date: 02/12/1999

Method: EPA 504

Analyst: SGA

Analyte	Spike Amount	Sample Result	Spike Result	Percent Recovery	Lower Control Limit	Upper Control Limit
Ethylene dibromide (EDB)	0.10	0.00	0.13	134	48	135
1,2-Dibromo-3-chloropropane	0.1	0.0	0.1	128	43	134

210 Park Road Oviedo, FL 32765 PHONE: 407-359-7194 Petroleum Hydrocarbons

CLIENT NAME: Tetra Tech NUS, Inc. PROJECT NAME: NAS Key West

PROJECT NUMBER:

DATE RECEIVED: 02/02/1999 ANALYTICAL PROTOCOL: FL-PRO

FAX: 359-7197

Sample Matrix (as Received):

99020016-1 A902-RB-01 02/01/1999 02/03/1999 02/03/1999 Water No

Analysis Confirmed : Dilution Factor :

MDL	Analyte	Results/Flag	Units	Analyst
0.1	Total PHS	0.1 U	mg/l	SGA
	(Surr) C-39 (%)	58	%	SGA

U = Undetected. The value preceeding the 'U' is the MDL for the analyte, based on dilution. Results reported on a Wet Weight basis.

FDEP CompQAPP # 900134G - FHRS Certification # E83239/83353

Reviewed by :

Quality Control Report for Spike Analysis

Petroleum Hydrocarbons

Matrix: Water

Lab Sample ID: 9901097-1

QC Batch ID: 9902FLRO013

Spike Units: mg/l

Analysis Date: 02/03/1999

Preparation Date: 02/03/1999

Method: FL-PRO Analyst: SGA

Analyte	Spike Amount	Sample Result	Spike Result	Percent Recovery	Lower Control Limit	Upper Control Limit
(Surr) C-39	100.0	0.0	126.0	126	7	139
Total PHS	50.0	0.0	33.0	66	57	110

Quality Control Report for LCS/LCS Duplicate Analysis

Petroleum Hydrocarbons

Matrix: Water

Lab Sample ID: LCS

QC Batch ID: 9902FLRO013

LCS Units: mg/l

Analysis Date: 02/03/1999

Preparation Date: 02/03/1999

Method: FL-PRO

Analyst: SGA

				LCS		LCSD	
	LCS		LCS	Percent	LCSD	Percent	
Analyte	Conc		Result	Recovery	Result	Recovery	RPD
(Surr) C-39	100.0	0.0	122.0	122	121.0	121	1
Total PHS	50.0	0.0	32.2	64	33.5	67	4

Quality Control Limits

	Lower	Upper	
Analyte	Limit	Limit	RPD
SS_C-39	4	140	31
Total PHS	57	110	11

210 Park Road

Oviedo, FL 32765 PHONE: 407-359-7194

Report of Analysis

CLIENT NAME: Tetra Tech NUS, Inc. PROJECT NAME: NAS Key West PROJECT NUMBER:

DATE RECEIVED: 02/02/1999

Lab Reference Number : Client Sample ID:

99020016-1 A902-RB-01 02/01/1999

Date Sampled :
Sample Matrix (as Received):

Water

Method	Parameter	Results/Flag	Units	Analyst	Date Prep	Date Anal	MDL
EPA 6010	Lead, Total	3 U	ug/l	GG	02/03/1999	02/03/1999	3

U = Undetected. The value preceeding the 'U' is the MDL for the analyte. Results reported on a Wet Weight basis. FDEP CompQAPP # 900134G - FHRS Certification # E83239/83353

Quality Control Report for LCS Analysis

INORGANICS

					Lower	Upper
		LCS	LCS	Percent	Control	Control
Analyte		Conc	Result	Recovery	Limit	Limit
Method: EPA 6010 Lead, Total	QC Batch: 9902RC022	Sample ID: LCS 100 ug/l	Date Prep: 02/03/1999 Da 0 105	te Anal: 02/03/1999 1 05	Analyst: GG 85	117

Quality Control Report for Spike Analysis

INORGANICS

		Spike	Sample	Spike	Percent	Lower Control	Upper Control
Analyte		Amount	Result	Result	Recovery	Limit	Limit
Method: EPA 6010 Lead, Total	QC Batch: 9902RC022	Sample ID: 9902003-2 100 ug/l	Date Prep: 02/ 0	/03/1999 Da 97	ate Anal: 02/03/1999 97	Analyst: GG 78	120

TO Park Road, Dviedo, FL32765 CHAIN OF CUSTODY OT-359-7194 (GA) 407-359-7197 CHAIN OF CUSTODY ORLANDO, FL 32811 ORLANDO, FL 32811

TEL: 407-425-6700 • FAX: 407-425-0707

ACCUTEST JOB #: 990200

ACCUTEST QUOTE #:

and a submaries and	CLIENT INFO	RMATION				ILITY INF			Τ.,						AN	ALY	TICAI	INF	ORM	ATIO	N	i i i	MATRIX CODES
NAME 1311 E ADDRESS Tallo ha CITY, Paul SEND REPORT / PHONE #	Tech NU xecutive C ussee 1 Calligan B50) 656-	enter Dr. 8	uite220 301 ZIP	PROJECT	NO.	16-7	4D3	3		ECEI	BVAT				2)	RO						DW - DRINKING WATER GW - GROUND WATER WW - WASTE WATER SO - SOIL SL - SLUDGE OI - OIL LIQ - OTHER LIQUID SOL - OTHER SOLID
ACCUTEST SAMPLE #	FIELD ID / P	OINT OF COLLECT	TION	DATE		SAMPLED BY:	MATRIX	# OF BOTILES	귳	NaOH HNO3	HZSO4		50	SS	239.2	8310	FL-PR						LAB USE ONLY
l	A902-RB.	-01 /Rinsat	Black	2/1/99	1120	JB,RD				χ	X	1	~	7	Ż	7							
									<u>. </u>	_		-								-	\perp		
									-	+	$\left \cdot \right $	-								\dashv	-	-	
							_		\dashv	+	\vdash									-	_	+	
														·									
									\dashv	+	$\left \cdot \right $	-											
		<u>:</u>							+		\vdash	+							-			+	
									+			T							\dashv		-		
 	ATA TURNAROUN	DINFORMATION			DATA DEL	VERABL	E INFO	RMA	TIOI	V								COM	MENT	S/RE	MARK	S	
STANDAI 48 HOUR 24 HOUR OTHER_	RD I RUSH I EMERGENCY OR RUSH IS FAX DATA IOUSLY APPROVED	APPROVED BY:		STAND COMMIDISK D STATE OTHER	ERCIAL "B ELIVERAB FORMS (SPECIFY	LE)				P							-Mriii			-		nore sed	another lab's.
RELINQUISHED B	Contract Con	AMPLE CUSTODY DATE TIME:	RECEIVED B	Y:			IE SAN QUISHEI		S CI	IANG	E PO	SSE	SION TE TIN	I, INC IE:	LUD	RE	CEIVE	RIER D BY:	DELI	/ERY		, ,	
<i>ک</i> ف ، ما	Borkou, H	2/1/99 1736 DATE TIME:	1. 805	24057	1475		QUISHEI	D BY:		· · · ·	·	DA	TE TIN	IE:		RE	CEIVE	D BY:	•		2,	12/9	9 930
3. RELINQUISHED B		DATE TIME:	3.7Z	· 2/	<u></u>	4.	•]	PR	ESER		4. ERE A	PPLIC	ABLE			ON ICE		TEMPERATURE
5			5.			1										<u></u>							

APPENDIX H

LABORATORY ANALYTICAL REPORTS FOR GROUNDWATER

210 Park Road, Oviedo, Florida 32765 Phone: 407-359-7194 Fax: 407-359-7197

12-14-1998

Paul Calligan
Tetra Tech NUS, Inc.
1311 Executive Center Drive, Ste. 220
Tallahassee, FL 32301-

Dear Paul Calligan:

Enclosed are the results of the analysis of your samples received 12/03/1998.

Our laboratory is certified by the Florida DHRS (Lab #E83239) and operates under an FDEP approved Comprehensive Quality Assurance Plan (#900134G). Unless otherwise noted, all results are reported as received. All data were determined in accordance with published procedures (EPA-600/4-79-020), Methods for Chemical Analysis of Water and Wastes, Revised March 1983 and/or Standard Methods for the examination of Water and Wastewater, 18th Edition 1989 and/or Test Methods for Evaluating Solid Waste (EPA-SW-846, Revised January 1995), unless stated otherwise in our CompQapp under method modifications.

If you have any questions, please do not hesitate to give me a call.

Sincerely,

Laboratory Manager

210 Park Road, Oviedo, Florida 32765 Phone: 407-359-7194 Fax: 407-359-7197

Client:

Tetra Tech NUS, Inc.

Contact: Paul Calligan

1311 Executive Center Drive, Ste. 220

Phone:

(850) 656-5458

Tallahassee, FL 32301-

Laboratory Reference Number: 98120026

Project Name: Truck Fill Stand

Project Number: 7586

Chain of Custody: 13030

Sample temperature at time of receipt: 4 degrees C

Laboratory ID	Matrix	Client ID	Status Date/Time Samp	
98120026-1	Water	A902-GW-MW1-001	RUN	12/02/1998 15:50
98120026-2	Water	A902-GW-MW2-001	RUN	12/02/1998 16:31
98120026-3	Water	A902-GW-MW7-001	RUN	12/02/1998 17:16

Number	Parameter	Description
3	EPA 504	EDB/DBCP
3	EPA 8310	PAH's by HPLC
3	FL-PRO	Petroleum Hydrocarbons
3	EPA 8021	Volatile Organics
3	EPA 6010	Lead by ICAP

210 Park Road Oviedo, FL 32765 407-359-7194 - (FAX) 359-7197

Case Narrative

Paul Calligan Tetra Tech NUS, Inc. 1311 Executive Center Drive, Ste. 220 Tallahassee, FL 32301-

CASE NARRATIVE for Work Order: 98120026

Project Number: 7586

Project Name: Truck Fill Stand

This Case Narrative is a summary of events and/or problems encountered with this Work Order.

EPA 8310 results were reported by EPA 610 GC analysis due to high organic matrix interference.

For samples requesting EPA 601/602/8010/8020/8021 analysis, the GCMS method EPA 624/8260 was substituted in order to generate the highest quality data possible at no additional cost.

Definition of Flags

- No surrogate result due to dilution or matrix interference.
- Estimated Value, value not accurate.
- Off-scale high. Actual value is greater than value given.
 Sample held beyond the accepted holding time.
 Value reported is less than the laboratory method detection limit.
 Analyte was both detected in the method blank and sample.

QC Batch Summary

Paul Calligan
Tetra Tech NUS, Inc.
1311 Executive Center Drive, Ste. 220
Tallahassee, FL 32301-

QC BATCH SUMMARY for Work Order: 98120026

Project Number: 7586

Project Name: Truck Fill Stand

Method	SubNum	QC Batch
EPA 504 - EDB/DBCP		
	-1	9812EDB002
	-2	9812EDB002
	-3	9812EDB002
EPA 6010 - Lead by ICAP		
-	-1	9812RC031
	-2	9812RC031
	-3	9812RC031
EPA 8310 - PAH's by HPLC		
-	-1	9812PAH037
	-2	9812PAH037
	-3	9812PAH037
FL-PRO - Petroleum Hydrocarbo	ons	
	-1	9812FLRO011
	-2	9812FLRO011
	-3	9812FLRO011
EPA 8021 - Volatile Organics		
	-1	9812MS3012
	-2	9812MS3012
	-3	9812MS3012

PC&B Environmental Laboratories, Inc. 210 Park Road Oviedo, FL 32765 PHONE: 407-359-7194

Volatile Organics

CLIENT NAME: Tetra Tech NUS, Inc. PROJECT NAME: Truck Fill Stand PROJECT NUMBER: 7586
DATE RECEIVED: 12/03/1998
ANALYTICAL PROTOCOL: EPA 8021

FAX: 359-7197 Lab Reference Number : Client Sample ID :

98120026-1

A902-GW-MW1-001

Date Sampled : Date Extracted : Date Analyzed:

12/02/1998 12/04/1998 12/04/1998

Sample Matrix (as Received): Analysis Confirmed : Dilution Factor :

Water **GCMS**

MDL	Analyte	Results/Flag		Analyst
1.0	Benzene	4.3	ug/i	KN
1.0	Bromobenzene	1.0 U	ug/l	KN
1.0	Bromochloromethane	1.0 U	ug/l	KN
1.0	Bromodichloromethane	1.0 U	ug/l	KN
1.0	Bromoform	1.0 U	ug/l	KN
1.0	Bromomethane	1.0 U	ug/l	KN
1.0	n-Butylbenzene	1.0 U	ug/l	KN
1.0	sec-Butylbenzene	12.1	ug/l	KN
1.0	tert-Butylbenzene	1.0 U	ug/i	KN
1.0	Carbon tetrachloride	1.0 U	ug/l	KN
1.0	Chlorobenzene	1.0 U	ug/l	KN
1.0	Chloroethane	1.0 U	ug/l	KN
1.0	Chloroform	1.0 U	ug/l	KN
1.0	Chloromethane	1.0 U	ug/l	KN
1.0	2-Chlorotoluene	1.0 U		KN
1.0	4-Chlorotoluene	1.0 U	ug/l ug/l	KN
1.0	Dibromochloromethane	1.0 U	•	
1.0	1,2-Dibromoethane	1.0 U	ug/l	KN KN
1.0	Dibromomethane	1.0 U	ug/l	
1.0	1,2-Dichlorobenzene		ug/l	KN
1.0	1,3-Dichlorobenzene	1.0 U	ug/l	KN
1.0	1,4-Dichlorobenzene	1.0 U	ug/l	KN
1.0	•	1.0 U	ug/l	KN
	Dichlorodifluoromethane	1.0 U	ug/l	KN
1.0 1.0	1,1-Dichloroethane	1.0 U	ug/l	KN
	1,2-Dichloroethane	1.0 U	ug/l	KN
1.0	1,1-Dichloroethene	1.0 U	ug/l	KN
1.0	cis-1,2-Dichloroethene	1.0 U	ug/i	KN
1.0	trans-1,2-Dichloroethene	1.0 U	ug/l	KN
1.0	1,2-Dichloropropane	1.0 U	ug/i	KN
1.0	1,3-Dichloropropane	1.0 U	ug/l	KN
1.0	2,2-Dichloropropane	1.0 U	ug/l	KN
1.0	1,1-Dichloropropene	1.0 U	ug/l	KN
1.0	1,3-Dichloropropene (cis)	1.0 U	ug/l	KN
1.0	1,3-Dichloropropene (trans)	1.0 U	ug/l	KN
1.0	Ethylbenzene	1.0 U	ug/l	KN
1.0	Hexachlorobutadiene	1.0 U	ug/l	KN
1.0	Isopropylbenzene	17.5	ug/l	KN
1.0	p-Isopropyltoluene	1.0 U	ug/l	KN
1.0	Methylene chloride	1.0 U	ug/l	KN
1.0	Naphthalene	1.0 U	ug/l	KN
1.0	n-Propylbenzene	38.4	ug/l	KN
1.0	Styrene	1.0 U	ug/l	KN
1.0	1,1,1,2-Tetrachloroethane	1.0 U	ug/i	KN
1.0	1,1,2,2-Tetrachloroethane	1.0 U	ug/l	KN
1.0	Tetrachloroethene	1.0 U	ug/i ug/i	KN
1.0	Toluene	1.0 U		
1.0	1,2,3-Trichlorobenzene		ug/l	KN .
1.0	1,2,4-Trichlorobenzene	1.0 U	ug/l	KN
	· ·	1.0 U	ug/l	KN
1.0	1,1,1-Trichloroethane	1.0 U	ug/l	KN
1.0	1,1,2-Trichloroethane	1.0 U	ug/i	KN
1.0	Trichloroethene	1.0 U	ug/l	KN
1.0	Trichlorofluoromethane	1.0 U	ug/l	KN
1.0	1,2,3-Trichloropropane	1.0 U	ug/l	KN
1.0	1,2,4-Trimethylbenzene	1.0 U	ug/l	KN

210 Park Road Oviedo, FL 32765 PHONE: 407-359-7194 FAX: 359-7197 Volatile Organics

CLIENT NAME: Tetra Tech NUS, Inc. PROJECT NAME: Truck Fill Stand PROJECT NUMBER: 7586

PROJECT NUMBER: 7586
DATE RECEIVED: 12/03/1998
ANALYTICAL PROTOCOL: EPA 8021

Lab Reference Number: 98

Client Sample ID : Date Sampled : Date Extracted : 98120026-1 A902-GW-MW1-001

12/02/1998 12/04/1998

Date Analyzed : Sample Matrix (as Received): 12/04/1998 Water

Analysis Confirmed :

Dilution Factor :

Water GCMS

	MDL Analyte		Results/Fla	ag Units	Analyst
1.0	1,3,5-Trimethylbenzene	1.0 U	ug/l	KN	
1.0	Vinyl chloride	1.0 U	ug/l	KN	
1.0	MTBE	1.0 U	ug/l	KN	
1.0	o-Xylene	1.0 ປ	ug/l	KN	
1.0	m-Xylene	1.0 U	ug/l	KN	
1.0	p-Xylene	1.0 U	ug/l	KN	
	(Surr) 1,2-Dichloroethane-d4 (%)	72 \	%	KN	
	(Surr) Toluene-d8 (%)	146	%	KN	
	(Surr) 4-Bromofluorobenzene (%)	128	%	KN	

U = Undetected. The value preceeding the 'U' is the MDL for the analyte, based on dilution. Results reported on a Wet Weight basis.

| FPEP CompQAPP # 900134G - FHRS Certification # E83239/83353

Reviewed by:

PC&B Environmental Laboratories, Inc. 210 Park Road

Oviedo, FL 32765 PHONE: 407-359-7194 FAX: 359-7197

Volatile Organics

CLIENT NAME: Tetra Tech NUS, Inc. PROJECT NAME: Truck Fill Stand PROJECT NUMBER: 7586 DATE RECEIVED: 12/03/1998 ANALYTICAL PROTOCOL: EPA 8021

ab Reference Number : Jlient Sample ID :

98120026-2

Date Sampled : Date Extracted : Date Analyzed : A902-GW-MW2-001 12/02/1998 12/04/1998 12/04/1998

Sample Matrix (as Received): Analysis Confirmed:

Water GCMS

,	,,,	aı,	yo	13	·	v	11 11	11
r	٦ii	ı ıti	nr	, F	-	_t	or	٠
	<i>7</i> 11	uu	u	3 1	œ	u	u	

MDL	Analyte	Results/Flag	Units	Analyst_
1.0	Benzene	2.7	ug/l	KN
1.0	Bromobenzene	1.0 U	ug/l	KN
1.0	Bromochloromethane	1.0 U	ug/l	KN
1.0	Bromodichloromethane	1.0 U	ug/l	KN
1.0	Bromoform	1.0 U	ug/l	KN
1.0	Bromomethane	1.0 U	ug/l	KN
1.0	n-Butylbenzene	1.0 U	ug/l	KN
1.0	sec-Butylbenzene	5.6	ug/l	KN
1.0	tert-Butylbenzene	1.0 U	ug/l	KN
1.0	Carbon tetrachloride	1.0 U	ug/l	KN
1.0	Chlorobenzene	1.0 U	ug/l	KN
1.0	Chloroethane	1.0 U	ug/l	KN
1.0	Chloroform	1.0 U	ug/l	KN
1.0	Chloromethane	1.0 U	ug/l	KN
1.0	2-Chlorotoluene	1.0 U	ug/l	KN
1.0	4-Chlorotoluene	1.0 U	ug/l	KN
1.0	Dibromochloromethane	1.0 U	ug/l	KN
1.0	1,2-Dibromoethane	1.0 U	ug/l	KN
1.0	Dibromomethane	1.0 U	ug/l	KN
1.0	1,2-Dichlorobenzene	1.0 U	ug/l	KN
1.0	1,3-Dichlorobenzene	1.0 U	ug/l	KN
1.0	1,4-Dichlorobenzene	1.0 U	ug/l	KN
1.0	Dichlorodifluoromethane	1.0 U	ug/l	KN
1.0	1,1-Dichloroethane	1.0 U	ug/l	KN
1.0	1,2-Dichloroethane	1.0 U	ug/l	KN
1.0	1,1-Dichloroethene	1.0 U	ug/l	KN
1.0	cis-1,2-Dichloroethene	1.0 U	ug/i	KN
1.0	trans-1,2-Dichloroethene	1.0 U	ug/i	KN
1.0	1,2-Dichloropropane	1.0 U	ug/l	KN
1.0	1,3-Dichloropropane	1.0 U	ug/l	KN
1.0	2,2-Dichloropropane	1.0 U	ug/l	KN
1.0	1,1-Dichloropropene	1.0 U	ug/l	KN
1.0	1,3-Dichloropropene (cis)	1.0 U	ug/l	KN
1.0	1,3-Dichloropropene (trans)	1.0 U	ug/l	KN
1.0	Ethylbenzene	1.0 U	ug/l	KN
1.0	Hexachlorobutadiene	1.0 U	ug/l	KN
1.0	Isopropylbenzene	10.0	ug/l	KN
1.0	p-Isopropyltoluene	1.0 U	ug/l	KN
1.0	Methylene chloride	3.1 V	ug/i	KN
1.0	Naphthalene	1.0 U	ug/l	KN
1.0	n-Propylbenzene	18.4	ug/l	KN
1.0	Styrene	1.0 U	ug/l	KN
1.0	1,1,1,2-Tetrachloroethane	1.0 U	ug/i	KN
1.0	1,1,2,2-Tetrachloroethane	1.0 U	ug/l	KN
1.0	Tetrachloroethene	1.0 U	ug/l	KN
1.0	Toluene	1.0 U	ug/i ug/i	KN
1.0	1,2,3-Trichlorobenzene	1.0 U	ug/i	KN
1.0	1,2,4-Trichlorobenzene	1.0 U	ug/i	KN
1.0	1,1,1-Trichloroethane	1.0 U	ug/l	KN
1.0	1,1,2-Trichloroethane	1.0 U	ug/l	KN
1.0	Trichloroethene	1.0 U		KN
1.0	Trichlorofluoromethane	1.0 U	ug/l ug/l	KN
1.0	1,2,3-Trichloropropane	1.0 U	ug/i ug/l	KN
1.0	1,2,4-Trimethylbenzene	1.0 U	ug/l	KN
	1,2, 1 minumportzere	1.0 0	~9/1	1/14

210 Park Road Oviedo, FL 32765 PHONE: 407-359-7194 FAX: 359-7197 Volatile Organics

CLIENT NAME: Tetra Tech NUS, Inc. PROJECT NAME: Truck Fill Stand PROJECT NUMBER: 7586

PROJECT NUMBER: 7586
DATE RECEIVED: 12/03/1998
ANALYTICAL PROTOCOL: EPA 8021

Lab Reference Number :

Client Sample ID : Date Sampled : Date Extracted : Date Analyzed : 98120026-2

A902-GW-MW2-001

12/02/1998 12/04/1998 12/04/1998

Sample Matrix (as Received):

Water

Analysis Confirmed :

GCMS

Dilution	E 2	~+.	٦r	
Dilution	ı a	UL	"	٠

	MDL Analyte		Results/Fl	ag Units	Analyst
1.0	1,3,5-Trimethylbenzene	1.0 U	ug/l	KN	
1.0	Vinyl chloride	1.0 U	ug/l	KN	
1.0	MTBE	1.0 U	ug/l	KN	
1.0	o-Xylene	1.0 U	ug/l	KN	
1.0	m-Xylene	1.0 U	ug/l	KN	
1.0	p-Xylene	1.0 U	ug/l	KN	
	(Surr) 1,2-Dichloroethane-d4 (%)	80	%	KN	
	(Surr) Toluene-d8 (%)	107	%	KN	
	(Surr) 4-Bromofluorobenzene (%)	146	%	KN	

U = Undetected. The value preceeding the 'U' is the MDL for the analyte, based on dilution. Results reported on a Wet Weight basis.

| Compared to the preceeding the 'U' is the MDL for the analyte, based on dilution. Results reported on a Wet Weight basis.

Reviewed by :

210 Park Road Oviedo, FL 32765 PHONE: 407-359-7194 FAX: 359-7197

Volatile Organics

CLIENT NAME: Tetra Tech NUS, Inc. PROJECT NAME: Truck Fill Stand PROJECT NUMBER: 7586 DATE RECEIVED: 12/03/1998 ANALYTICAL PROTOCOL: EPA 8021

ab Reference Number:

98120026-3

Client Sample ID:

A902-GW-MW7-001

Date Sampled : Date Extracted : Date Analyzed:

12/02/1998 12/04/1998 12/04/1998

Sample Matrix (as Received): Analysis Confirmed :

Water **GCMS**

Dilution Factor :

_	8
1	

MDL	Analyte	Results/Flag	Units	Analyst
1.0	Benzene	1.0 U	ug/l	KN
1.0	Bromobenzene	1.0 U	ug/l	KN
1.0	Bromochloromethane	1.0 U	ug/i	KN
1.0	Bromodichloromethane	1.0 U	ug/l	KN
1.0	Bromoform	1.0 U	ug/l	KN
1.0	Bromomethane	1.0 U	ug/l	KN
1.0	n-Butylbenzene	1.0 U	ug/l	KN
1.0	sec-Butylbenzene	1.0 U	ug/l	KN
1.0	tert-Butylbenzene	1.0 U	ug/l	KN
1.0	Carbon tetrachloride	1.0 U	ug/l	KN
1.0	Chlorobenzene	1.0 U	ug/i	KN
1.0	Chloroethane	1.0 U	ug/i	KN
1.0	Chloroform	1.0 U		
1.0	Chloromethane	1.0 U	ug/i	KN
1.0	2-Chlorotoluene		ug/l	KN
			ug/l	KN
1.0	4-Chlorotoluene	1.0 U	ug/l	KN
1.0	Dibromochloromethane	1.0 U	ug/l	KN
1.0	1,2-Dibromoethane	1.0 U	ug/l	KN
1.0	Dibromomethane	1.0 U	ug/l	KN
1.0	1,2-Dichlorobenzene	1.0 U	ug/l	KN
1.0	1,3-Dichlorobenzene	1.0 U	ug/l	KN
1.0	1,4-Dichlorobenzene	1.0 U	ug/l	KN
1.0	Dichlorodifluoromethane	1.0 U	ug/l	KN
1.0	1,1-Dichloroethane	1.0 U	ug/i	KN
1.0	1,2-Dichloroethane	1.0 U	ug/i	KN
1.0	1,1-Dichloroethene	1.0 U	ug/l	KN
1.0	cis-1,2-Dichloroethene	1.0 U	ug/l	KN
1.0	trans-1,2-Dichloroethene	1.0 U	ug/l	KN
1.0	1,2-Dichloropropane	1.0 U	ug/l	KN
1.0	1,3-Dichloropropane	1.0 U	ug/l	KN
1.0	2,2-Dichloropropane	1.0 U	ug/l	KN
1.0	1,1-Dichloropropene	1.0 U	ug/l	KN
1.0	1,3-Dichloropropene (cis)	1.0 U	ug/i	KN
1.0	1,3-Dichloropropene (trans)	1.0 U	ug/l	KN
1.0	Ethylbenzene	26.3	ug/l	KN
1.0	Hexachlorobutadiene	1.0 U	ug/l	KN
1.0	Isopropylbenzene	1.0 U	ug/l	KN
1.0	p-isopropyltoluene	1.0 U	ug/i	KN
1.0	Methylene chloride	6.4 V	ug/l	KN
1.0	Naphthalene	1.0 U	ug/l	KN
1.0	n-Propylbenzene	1.0 U	ug/l	KN
1.0	Styrene	1.0 U	ug/i	KN
1.0	1,1,1,2-Tetrachloroethane	1.0 U	-	KN
		1.0 U	ug/l	
1.0	1,1,2,2-Tetrachloroethane		ug/l	KN
1.0	Tetrachloroethene	1.0 U	ug/l	KN
1.0	Toluene	1.0 U	ug/l	KN
1.0	1,2,3-Trichlorobenzene	1.0 U	ug/i	KN
1.0	1,2,4-Trichlorobenzene	1.0 U	ug/l	KN
1.0	1,1,1-Trichloroethane	1.0 U	ug/l	KN
1.0	1,1,2-Trichloroethane	1.0 U	ug/l	KN
1.0	Trichloroethene	1.0 U	ug/i	KN
1.0	Trichlorofluoromethane	1.0 U	ug/l	KN
1.0	1,2,3-Trichloropropane	1.0 U	ug/l	KN
1.0	1,2,4-Trimethylbenzene	1.0 U	ug/l	KN

(Surr) 4-Bromofluorobenzene (%)

210 Park Road Oviedo, FL 32765 PHONE: 407-359-7194 Volatile Organics

CLIENT NAME: Tetra Tech NUS, Inc. PROJECT NAME: Truck Fill Stand PROJECT NUMBER: 7586

KN

PROJECT NUMBER: 7586 DATE RECEIVED: 12/03/1998 ANALYTICAL PROTOCOL: EPA 8021

FAX: 359-7197

Lab Reference Number : Client Sample ID : Date Sampled : Date Extracted : 98120026-3

A902-GW-MW7-001

12/02/1998

Date Extracted : Date Analyzed : 12/04/1998 12/04/1998

Sample Matrix (as Received): Analysis Confirmed:

Water GCMS

•	,			••••	
Di	lution	١Fa	ct	or	

	MDL Analyte		Results/F	lag Units	Analyst
1.0	1,3,5-Trimethylbenzene	1.0 U	ug/l	KN	
1.0	Vinyl chloride	1.0 U	ug/l	KN	
1.0	MTBE	1.0 U	ug/l	KN	
1.0	o-Xylene	1.0 U	ug/l	KN	
1.0	m-Xylene	1.0 U	ug/l	KN	
1.0	p-Xylene	1.0 U	ug/i	KN	
	(Surr) 1,2-Dichloroethane-d4 (%)	84	%	KN	
	(Surr) Toluene-d8 (%)	130	%	KN	

145

%

U = Undetected. The value preceeding the U is the MDL for the analyte, based on dilution. Results reported on a Wet Weight basis.

FPEP CompQAPP # 900134G - FHRS Certification # E83239/83353

Reviewed by :

Quality Control Report for Method Blank

Volatile Organics

Matrix: Water

Analysis Date: 12/04/1998

Lab Sample ID: RB-12-04

Preparation Date: 12/04/1998

QC Batch ID: 9812MS3012

Method: EPA 8021

Result Units: ug/l

Analyst: KN

Analyte	Result	Flag	Analyte	Result	Flag
Benzene	1.0	U	Bromobenzene	1.0	U
Bromochloromethane	1.0	U	Bromodichloromethane	1.0	U
Bromoform	1.0	U	Bromomethane	1.0	U
n-Butylbenzene	1.0	U	sec-Butylbenzene	1.0	U
tert-Butylbenzene	1.0	U	Carbon tetrachloride	1.0	U
Chlorobenzene	1.0	U	Chloroethane	1.0	U
Chloroform	1.0	U	Chloromethane	1.0	U
2-Chlorotoluene	1.0	U	4-Chlorotoluene	1.0	U
Dibromochloromethane	1.0	U	1,2-Dibromoethane	1.0	U
Dibromomethane	1.0	U	1,2-Dichlorobenzene	1.0	U
1,3-Dichlorobenzene	1.0	U	1,4-Dichlorobenzene	1.0	U
Dichlorodifluoromethane	1.0	U	1,1-Dichloroethane	1.0	U
1,2-Dichloroethane	1.0	U	1,1-Dichloroethene	1.0	U
cis-1,2-Dichloroethene	1.0	U	trans-1,2-Dichloroethene	1.0	U
1,2-Dichloropropane	1.0	U	1,3-Dichloropropane	1.0	U
2,2-Dichloropropane	1.0	U	1,1-Dichloropropene	1.0	U
1,3-Dichloropropene (cis)	1.0	U	1,3-Dichloropropene (trans)	1.0	U
Ethylbenzene	1.0	Ü	Hexachlorobutadiene	1.0	U
Isopropylbenzene	1.0	U	p-Isopropyltoluene	1.0	U
Methylene chloride	15.0	V	Naphthalene	1.0	U
n-Propylbenzene	1.0	U	Styrene	1.0	U
1,1,1,2-Tetrachloroethane	1.0	U	1,1,2,2-Tetrachloroethane	1.0	U
Tetrachioroethene	1.0	U	Toluene	1.0	IJ
1,2,3-Trichlorobenzene	1.0	U	1,2,4-Trichlorobenzene	1.0	U
1,1,1-Trichloroethane	1.0	U	1,1,2-Trichloroethane	1.0	U
Trichloroethene	1.0	U	Trichlorofluoromethane	1.0	U
1,2,3-Trichloropropane	1.0	υ	1,2,4-Trimethylbenzene	1.0	U
1,3,5-Trimethylbenzene	1.0	U	Vinyl chloride	1.0	U
MTBE	1.0	U	o-Xylene	1.0	U
m-Xylene	1.0	U	p-Xylene	1.0	U
(Surr) 1,2-Dichloroethane-d4 (%)	95.0		(Surr) Toluene-d8 (%)	135.0	
(Surr) 4-Bromofluorobenzene (%)	118.0				

Quality Control Report for LCS Analysis

Volatile Organics

Matrix: Water

Analysis Date: 12/04/1998

Lab Sample ID: LCS

Preparation Date: 12/04/1998

QC Batch ID: 9812MS3012

Method: EPA 8021

LCS Units: ug/l

Analyst: KN

Analyte	LCS Conc	LCS Result	Percent Recovery	Lower Control Limit	Upper Control Limit
Benzene	20.0	19.0	95	75	120
Chlorobenzene	20.0	23.0	115	75	120
1,4-Dichlorobenzene	20.0	22.0	110	75	120
1,1-Dichloroethene	20.0	17.0	85	75	120
Ethylbenzene	20.0	19.0	95	75	120
Toluene	20.0	18.0	90	75	120
Trichloroethene	20.0	24.0	120	75	120
o-Xylene	20.0	21.0	105	75	120
m-Xylene	20.0	21.0	105	75	120
p-Xylene	20.0	23.0	115	75	120

Quality Control Report for Spike/Spike Duplicate Analysis

Volatile Organics

Matrix: Water

Analysis Date: 12/04/1998

Lab Sample ID: 9812025-5

Preparation Date: 12/04/1998

QC Batch ID: 9812MS3012

Method: EPA 8021

Spike Units: ug/l

Analyst: KN

Analyte	Spike Amount	Sample Result	Spike Result	Spike Percent Recovery	MSD Result	MSD Percent Recovery	RPD
Benzene	50.0	0.0	48.0	96	52.0	104	8
Chlorobenzene	50.0	0.0	54.0	108	54.0	108	0
1,4-Dichlorobenzene	50.0	0.0	47.0	94	49.0	98	4
1,1-Dichloroethene	50.0	0.0	56.0	112	55.0	110	2
Ethylbenzene	50.0	0.0	57.0	114	53.0	106	7
Toluene	50.0	0.0	42.0	84	47.0	94	. 11
Trichloroethene	50.0	0.0	57.0	114	57.0	114	0
o-Xylene	50.0	0.0	44.0	88	46.0	92	4
m-Xylene	50.0	0.0	44.0	88	46.0	92	4
p-Xylene	50.0	0.0	47.0	94	48.0	96	2

Quality Control Limits

	Lower	Upper	
Analyte	Limit	Limit	RPD
Benzene	57	146	15
Chlorobenzene	67	128	10
1,4-Dichlorobenzene	72	134	10
1,1-Dichloroethene	70	125	15
Ethylbenzene	75	127	18
Toluene	64	131	11
Trichloroethene	75	122	15
o-Xylene	70	125	20
m-Xylene	68	133	11
p-Xviene	70	125	20

210 Park Road Oviedo, FL 32765 PHONE: 407-359-7194 FAX: 359-7197 PAH's by HPLC

CLIENT NAME: Tetra Tech NUS, Inc. PROJECT NAME: Truck Fill Stand PROJECT NUMBER: 7586 DATE RECEIVED: 12/03/1998 ANALYTICAL PROTOCOL: EPA 8310

Lab Reference Number :

Client Sample ID :

98120026-1

A902-GW-MW1-001

Date Sampled : Date Extracted : Date Analyzed : 12/02/1998 12/09/1998 12/10/1998

Sample Matrix (as Received):
Analysis Confirmed :
Dilution Factor :

Water No

N

MDL	Analyte	Results/Flag	Units	Analyst
5	Acenaphthene	21	ug/l	EA
5	Acenaphthylene	5 U	ug/l	EA
5	Anthracene	5 U	ug/l	EA
0.2	Benzo(a)anthracene	5.0 U	ug/l	EA
0.25	Benzo(a)pyrene	5.00 U	ug/i	EA
0.2	Benzo(b)fluoranthene	5.0 U	ug/i	EA
0.2	Benzo(ghi)perylene	5.0 U	ug/l	EA
0.25	Benzo(k)fluoranthene	5.00 U	ug/l	EA
0.01	Chrysene	5.00 U	ug/l	EA
0.2	dibenzo(ah)anthracene	5.0 U	ug/l	EA
0.01	Fluoranthene	5.00 U	ug/i	EA
0.01	Fluorene	5.00	ug/l	EA
0.10	Indeno(123cd)pyrene	5.00 U	ug/l	EA
0.05	Naphthalene	52.0	ug/l	EA
0.05	1-Methyl naphthalene	105	ug/i	EA
0.05	2-Methyl naphthalene	59.0	ug/l	EA
0.025	Phenanthrene	8.000	ug/l	EA
0.025	Pyrene	5.000 U	ug/l	EA

U = Undetected. The value preceeding the 'U' is the MDL for the analyte, based on dilution. Results reported on a Wet Weight basis.

FDEP CompQAPP # 900134G - FHRS Certification # E83239/83353

Reviewed by :

210 Park Road Oviedo, FL 32765 PHONE: 407-359-7194 FAX: 359-7197 CLIENT NAME: Tetra Tech NUS, Inc. PROJECT NAME: Truck Fill Stand **PROJECT NUMBER: 7586 DATE RECEIVED: 12/03/1998**

ANALYTICAL PROTOCOL: EPA 8310

Lab Reference Number :

Client Sample ID:

Date Sampled: Date Extracted : 98120026-2

A902-GW-MW2-001

PAH's by HPLC

12/02/1998 12/09/1998 12/10/1998

Date Analyzed: Sample Matrix (as Received): Analysis Confirmed:

Water No

Dilution Factor:

MDL	Analyte	Results/Flag	Units	Analyst
5	Acenaphthene	7	ug/i	EA
5	Acenaphthylene	5 U	ug/i	EA
5	Anthracene	5 U	ug/l	EA
0.2	Benzo(a)anthracene	5.0 U	ug/l	EA
0.25	Benzo(a)pyrene	5.00 U	ug/l	EA
0.2	Benzo(b)fluoranthene	5.0 U	ug/l	EA
0.2	Benzo(ghi)perylene	5.0 U	ug/l	EA
0.25	Benzo(k)fluoranthene	5.00 U	ug/l	EA
0.01	Chrysene	5.00 U	ug/l	EA
0.2	dibenzo(ah)anthracene	5.0 U	ug/l	EA
0.01	Fluoranthene	5.00 U	ug/l	EA
0.01	Fluorene	5.00 U	ug/l	EA
0.10	Indeno(123cd)pyrene	5.00 U	ug/l	EA
0.05	Naphthalene	81.0	ug/l	EA
0.05	1-Methyl naphthalene	100	ug/l	EA
0.05	2-Methyl naphthalene	92.0	ug/l	EA
0.025	Phenanthrene	11.000	ug/l	EA
0.025	Pyrene	5.000 U	ug/l	EA

U = Undetected. The value preceeding the 'U' is the MDL for the analyte, based on dilution. Results reported on a Wet Weight basis.

FBEP CompQAPP # 900134G - FHRS Certification # E83239/83353

Reviewed by:

210 Park Road Oviedo, FL 32765 PHONE: 407-359-7194 FAX: 359-7197 PAH's by HPLC

CLIENT NAME: Tetra Tech NUS, Inc. PROJECT NAME: Truck Fill Stand PROJECT NUMBER: 7586 DATE RECEIVED: 12/03/1998 ANALYTICAL PROTOCOL: EPA 8310

Lab Reference Number :

98120026-3

Client Sample ID : Date Sampled : A902-GW-MW7-001 12/02/1998

Date Extracted : Date Analyzed : 12/09/1998 -12/10/1998

Sample Matrix (as Received): Analysis Confirmed : Dilution Factor :

Water No

MDL	Analyte	Results/F	lag Units	Analyst
5	Acenaphthene	5 U	ug/l	EA
5	Acenaphthylene	5 U	ug/l	EA
5	Anthracene	. 5 U	ug/i	EA
0.2	Benzo(a)anthracene	5.0 U	ug/l	EA
0,25	Benzo(a)pyrene	5.00 U	ug/l	EA
0.2	Benzo(b)fluoranthene	5.0 U	ug/l	EΑ
0.2	Benzo(ghi)perylene	5.0 U	ug/i	EA
0.25	Benzo(k)fluoranthene	5.00 U	ug/l	EA
0.01	Chrysene	5.00 U	ug/i	EA
0.2	dibenzo(ah)anthracene	5.0 U	ug/l	EA
0.01	Fluoranthene	5.00 U	ug/l	EA
0.01	Fluorene	2.20 J	ug/i	EA
0.10	Indeno(123cd)pyrene	5.00 U	ug/l	EA
0.05	Naphthalene	6.00	ug/l	EA
0.05	1-Methyl naphthalene	1.30 J	ug/l	EA
0.05	2-Methyl naphthalene	5. 00 U	ug/l	EA
0.025	Phenanthrene	2.800 J	ug/l	EA
0.025	Pyrene	5.000 U	ug/l	EA

U = Undetected. The value preceeding the 'U' is the MDL for the analyte, based on dilution. Results reported on a Wet Weight basis.

FDEPCompQAPP # 900134G - FHRS Certification # E83239/83353

Reviewed by :

Quality Control Report for Method Blank

PAH's by HPLC

Matrix: Water____

Analysis Date: 12/10/1998

Lab Sample ID: RB-12-9

Preparation Date: 12/09/1998

QC Batch ID: 9812PAH037

Method: EPA 8310

Result Units: ug/l

Analyst: DC

Analyte	Result	Flag	Analyte	Result	Flag
Acenaphthene	5	U	Acenaphthylene	5	U
Anthracene	5	U	Benzo(a)anthracene	0.2	U
Benzo(a)pyrene	0.25	U	Benzo(b)fluoranthene	0.2	IJ
Benzo(ghi)perylene	0.2	U	Benzo(k)fluoranthene	0.25	U
Chrysene	0.01	U	dibenzo(ah)anthracene	0.2	U
Fluoranthene	0.01	U	Fluorene	0.01	U
Indeno(123cd)pyrene	0.10	U	Naphthalene	0.05	IJ
1-Methyl naphthalene	0.05	U	2-Methyl naphthalene	0.05	U
Phenanthrene	0.025	U	Pyrene	0.025	IJ

Quality Control Report for LCS Analysis

PAH's by HPLC

Matrix: Water

Analysis Date: 12/10/1998

Lab Sample ID: LCS

Preparation Date: 12/09/1998

QC Batch ID: 9812PAH037

Method: EPA 8310

LCS Units: ug/l

Analyst: DC

	LCS	LCS	Percent	Lower Control	Upper Control
Analyte	Conc	Result	Recovery	Limit	Limit
Acenaphthene	50.0	30.7	61	60	120
Acenaphthylene	25.0	16.6	66	60	120
Anthracene	1.0	0.9	93	60	120
Benzo(a)anthracene	2.5	2.0	79	60	120
Benzo(a)pyrene	2.5	2.0	79	60	120
Benzo(b)fluoranthene	1.0	8.0	81	60	120
Benzo(ghi)perylene	4.0	3.1	78	60	120
Benzo(k)fluoranthene	1.0	8.0	83	60	120
Chrysene	2.5	1.9	77	60	120
dibenzo(ah)anthracene	10.0	7.4	74	60	120
Fluoranthene	2.5	1.9	76	60	120
Fluorene	5.0	3.4	68	60	120
Indeno(123cd)pyrene	2.5	1.9	76	60	120
Naphthalene	25.0	14.8	59	60	120
Phenanthrene	2.0	1.4	70	60	120
Pyrene	5.0	3.5	70	60	120

Quality Control Report for Spike Analysis

PAH's by HPLC

Matrix: Water

Analysis Date: 12/10/1998

Lab Sample ID: 98120066-1

Preparation Date: 12/09/1998

QC Batch ID: 9812PAH037

Method: EPA 8310

Spike Units: ug/l

Analyst: DC

	Spike	Comple	Spike	Percent	Lower Control	Upper Control
Analyte	Amount	Sample Result	Result	Recovery	Limit	Limit
Acenaphthene	50.0	0.0	31.1	62	45	133
Acenaphthylene	25.0	0.0	16.9	68	45	133
Anthracene	1.0	0.0	0.9	88	45	133
Benzo(a)anthracene	2.5	0.0	2.2	88	45	133
Benzo(a)pyrene	2.5	0.0	2.2	88	45	133
Benzo(b)fluoranthene	1.0	0.0	0.9	89	45	133
Benzo(ghi)perylene	4.0	0.0	3.5	88	45	133
Benzo(k)fluoranthene	1.0	0.0	0.9	90	45	133
Chrysene	2.5	0.0	2.1	84	45	133
dibenzo(ah)anthracene	10.0	0.0	8.1	81	45	160
Fluoranthene	2.5	0.0	1.8	74	45	133
Fluorene	5.0	0.0	3.3	66	45	133
Indeno(123cd)pyrene	2.5	0.0	2.1	84	45	133
Naphthalene	25.0	0.0	15.7	63	45	133
Phenanthrene	2.0	0.0	1.3	67	45	133
Pyrene	5.0	0.0	3.4	68	45	133

210 Park Road Oviedo, FL 32765 PHONE: 407-359-7194 FAX: 359-7197 EDB/DBCP

CLIENT NAME: Tetra Tech NUS, Inc. PROJECT NAME: Truck Fill Stand PROJECT NUMBER: 7586

ANALYTICAL PROTOCOL: EPA 504

DATE RECEIVED: 12/03/1998

Lab Reference Number:

Client Sample ID: Date Sampled : Date Extracted :

98120026-1 A902-GW-MW1-001

12/02/1998 12/03/1998

Date Analyzed: Sample Matrix (as Received): 12/03/1998

Analysis Confirmed : Dilution Factor :

Water No

MDL	Analyte	Results/Flag Units	Analyst
0.02	Ethylene dibromide (EDB)	0.02 U ug/l	ELA
0.1	1,2-Dibromo-3-chloropropane	0.1 U ug/l	ELA

U = Undetected. The value preceeding the 'U' is the MDL for the analyte, based on dilution. Results reported on a Wet Weight basis.

FPEP CompQAPP # 900134G - FHRS Certification # E83239/83353

Reviewed by:

210 Park Road Oviedo, FL 32765 PHONE: 407-359-7194 FAX: 359-7197 EDB/DBCP

CLIENT NAME: Tetra Tech NUS, Inc. PROJECT NAME: Truck Fill Stand PROJECT NUMBER: 7586 **DATE RECEIVED: 12/03/1998 ANALYTICAL PROTOCOL: EPA 504**

ab Reference Number:

Slient Sample ID:

98120026-2

A902-GW-MW2-001

Date Sampled : Date Extracted :

12/02/1998

Date Analyzed: Sample Matrix (as Received): Analysis Confirmed: 12/03/1998 12/03/1998 Water

Dilution Factor:

No

MDL	Analyte	Results/Flag Units	Analyst
0.02	Ethylene dibromide (EDB)	0.02 U ug/l	ELA
0.1	1,2-Dibromo-3-chloropropane	0.1 U ug/l	ELA

U = Undetected. The value preceeding the 'U' is the MDL for the analyte, based on dilution. Results reported on a Wet Weight basis.

FDEP CompQAPP # 900134G - FHRS Certification # E83239/83353

Reviewed by:

210 Park Road Oviedo, FL 32765 PHONE: 407-359-7194 EDB/DBCP

CLIENT NAME: Tetra Tech NUS, Inc. PROJECT NAME: Truck Fill Stand

PROJECT NUMBER: 7586 DATE RECEIVED: 12/03/1998 ANALYTICAL PROTOCOL: EPA 504

FAX: 359-7197 Lab Reference Number :

Client Sample ID : Date Sampled : 98120026-3

A902-GW-MW7-001

12/02/1998 12/03/1998

Date Extracted : Date Analyzed :

12/03/1998

Sample Matrix (as Received):

12/03/1 Water

Analysis Confirmed : Dilution Factor : No

MDL_	Analyte	Results/Flag	Units	Analyst
0.02	Ethylene dibromide (EDB)	0.02 U	ug/l	ELA
0.1	1,2-Dibromo-3-chloropropane	0.1 U	ug/l	ELA

U = Undetected. The value preceeding the 'U' is the MDL for the analyte, based on dilution. Results reported on a Wet Weight basis. FDED CompQAPP # 900134G - FHRS Certification # E83239/83353

Reviewed by :

Quality Control Report for Method Blank

EDB/DBCP

Matrix: Water____

Analysis Date: 12/03/1998

Lab Sample ID: RB-12-03-98

Preparation Date: 12/03/1998

QC Batch ID: 9812EDB002 Result Units: ug/l Method: EPA 504

Analyst: ELA

Analyte	Result	Flag	Analyte	Result Flag
Ethylene dibromide (EDB)	0.02	U	1,2-Dibromo-3-chloropropane	0.1 U

Quality Control Report for LCS/LCS Duplicate Analysis

EDB/DBCP

Matrix: Water

Analysis Date: 12/03/1998

Lab Sample ID: LCS

Preparation Date: 12/03/1998

QC Batch ID: 9812EDB002

Method: EPA 504

LCS Units: ug/l

Analyst: ELA

Analyte	LC\$ Conc		LCS Result	LCS Percent Recovery	LCSD Result	LCSD Percent Recovery	RPD
Ethylene dibromide (EDB)	1.00	0.00	1.07	107	0.99	99	8
1,2-Dibromo-3-chloropropane	1.0	0.0	1.1	110	1.0	102	8

Quality Control Limits

Analyte	Lower Limit	Upper Limit	RPD
Ethylene dibromide (EDB)	75	120	20
1,2-Dibromo-3-chloropropane	75	120	20

Quality Control Report for Spike Analysis

EDB/DBCP

Matrix: Water

Analysis Date: 12/03/1998

Lab Sample ID: 9812026-1

Preparation Date: 12/03/1998

QC Batch ID: 9812EDB002

Method: EPA 504

Spike Units: ug/l

Analyst: ELA

Analyte	Spike Amount	Sample Result	Spike Result	Percent Recovery	Lower Control Limit	Upper Control Limit
Ethylene dibromide (EDB)	1.00	0.00	0.67	67	48	135
1,2-Dibromo-3-chloropropane	1.0	0.0	0.6	57	43	134

210 Park Road Oviedo, FL 32765 PHONE: 407-359-7194 Petroleum Hydrocarbons

CLIENT NAME: Tetra Tech NUS, Inc. PROJECT NAME: Truck Fill Stand

PROJECT NUMBER: 7586 DATE RECEIVED: 12/03/1998 ANALYTICAL PROTOCOL: FL-PRO

FAX: 359-7197 Lab Reference Number:

Client Sample ID: Date Sampled : Date Extracted:

98120026-1

A902-GW-MW1-001

12/02/1998 12/03/1998

Date Analyzed: Sample Matrix (as Received): 12/03/1998

Analysis Confirmed: Dilution Factor:

Water No

5

MDL	Analyte	Results/Flag	Units	Analyst
0.5	Total PHS	10.8	mg/l	SGA
	(Surr) C-39 (%)	0 DL	%	SGA

U = Undetected. The value preceeding the 'U' is the MDL for the analyte, based on dilution. Results reported on a Wet Weight basis.

FDER CompQAPP # 900134G - FHRS Certification # E83239/83353

Reviewed by:

210 Park Road Oviedo, FL 32765 PHONE: 407-359-7194 FAX: 359-7197 Petroleum Hydrocarbons

CLIENT NAME: Tetra Tech NUS, Inc. PROJECT NAME: Truck Fill Stand PROJECT NUMBER: 7586 DATE RECEIVED: 12/03/1998 ANALYTICAL PROTOCOL: FL-PRO

`.ab Reference Number :

Client Sample ID:

98120026-2

ple ID : A902-GW-MW2-001

Date Sampled:
Date Extracted:
Date Analyzed:

12/02/1998

Date Analyzed : Sample Matrix (as Received): 12/03/1998 12/03/1998 Water

Analysis Confirmed : Dilution Factor :

No 2

MDL	Analyte	Results/Flag	Units	Analyst
0.2	Total PHS	5.8	mg/l	SGA
	(Surr) C-39 (%)	83	%	SGA

U = Undetected. The value preceeding the 'U' is the MDL for the analyte, based on dilution. Results reported on a Wet Weight basis.

| FDEP CompQAPP # 900134G - FHRS Certification # E83239/83353

Reviewed by :

210 Park Road Oviedo, FL 32765 PHONE: 407-359-7194 Petroleum Hydrocarbons

CLIENT NAME: Tetra Tech NUS, Inc. PROJECT NAME: Truck Fill Stand PROJECT NUMBER: 7586 DATE RECEIVED: 12/03/1998 ANALYTICAL PROTOCOL: FL-PRO

FAX: 359-7197

Lab Reference Number : Client Sample ID : Date Sampled : 98120026-3

A902-GW-MW7-001

12/02/1998

Date Extracted :
Date Analyzed :

12/03/1998 12/03/1998

Sample Matrix (as Received): Analysis Confirmed: Water

Analysis Confirm Dilution Factor : No 1

MDL	Analyte	Results/Flag	Units	Analyst
0.1	Total PHS	0.3	mg/l	SGA
	(Surr) C-39 (%)	63	%	SGA

U = Undetected. The value preceeding the 'U' is the MDL for the analyte, based on dilution. Results reported on a Wet Weight basis.

DEP Comp QAPP # 900134G - FHRS Certification # E83239/83353

Reviewed by :

Quality Control Report for Method Blank

Petroleum Hydrocarbons

Matrix: Water___

Analysis Date: 12/03/1998

Lab Sample ID: RB-12-03-98

Preparation Date: 12/03/1998

QC Batch ID: 9812FLRO011

Method: FL-PRO

Result Units: mg/l

Analyst: SGA

Analyte	Result	Flag	Analyte	Result Flag
Total PHS	0.1	U	(Surr) C-39 (%)	100.0

Quality Control Report for LCS/LCS Duplicate Analysis

Petroleum Hydrocarbons

Matrix: Water

Analysis Date: 12/03/1998

Lab Sample ID: LCS

Preparation Date: 12/03/1998

QC Batch ID: 9812FLRO011

Method: FL-PRO

LCS Units: mg/l

Analyst: SGA

Analyte	LCS Conc		LCS Result	LCS Percent Recovery	LCSD Result	LCSD Percent Recovery	RPD
(Surr) C-39	100.0	0.0	94.0	94	92.0	92	2
Total PHS	5.0	0.0	3.5	70	3.5	70	0

Quality Control Limits

	Lower	Upper	
Analyte	`Limit	Limit	RPD
SS_C-39	4	140	31
Total PHS	57	110	11

Quality Control Report for Spike/Spike Duplicate Analysis

Petroleum Hydrocarbons

Matrix: Water

Analysis Date: 12/03/1998

Lab Sample ID: 9811188-1

Preparation Date: 12/03/1998

QC Batch ID: 9812FLRO011

Method: FL-PRO

Spike Units: mg/l

Analyst: SGA

Analyte	Spike Amount	Sample Result	Spike Result	Spike Percent Recovery	MSD Result	MSD Percent Recovery	RPD
(Surr) C-39	100.0	0.0	106.0	106	96.0	96	10
Total PHS	5.0	0.0	3.9	78	3.9	78	0

•	Lower	Upper	
Analyte	Limit	Limit	RPD
SS_C-39	7	139	30
Total PHS	57	110	11

PC&B Environmental Laboratories, Inc. 210 Park Road Oviedo, FL 32765 PHONE: 407-359-7194

Report of Analysis

CLIENT NAME: Tetra Tech NUS, Inc. PROJECT NAME: Truck Fill Stand PROJECT NUMBER: 7586 DATE RECEIVED: 12/03/1998

Lab Reference Number :

Client Sample ID:

98120026-1

A902-GW-MW1-001

Date Sampled : Sample Matrix (as Received):

12/02/1998 Water

Method	Parameter	Results/Flag	Units	Analyst	Date Prep	Date Anal	MDL
EPA 6010	Lead, Total	4	ug/l	GG	12/07/1998	12/08/1998	3

U = Undetected. The value preceeding the 'U' is the MDL for the analyte. Results reported on a Wet Weight basis.

FDEP CompQAPP # 900134G - FHRS Certification # E83239/83353

Reviewed by:

210 Park Road Oviedo, FL 32765 PHONE: 407-359-7194

Report of Analysis

CLIENT NAME: Tetra Tech NUS, Inc. PROJECT NAME: Truck Fill Stand PROJECT NUMBER: 7586 **DATE RECEIVED: 12/03/1998**

Lab Reference Number:

98120026-2

Client Sample ID:

A902-GW-MW2-001 12/02/1998

)ate Sampled : Sample Matrix (as Received):

Water

- Method	Parameter	Results/Fla	g Units	Analyst	Date Prep	Date Anal	MDL
EPA 6010	Lead, Total	3 U	ug/l	GG	12/07/1998	12/08/1998	3

U = Undetected. The value preceeding the "U" the MDL for the analyte. Results reported on a Wet Weight basis.

| FDEP CompQAPP # 900134G - FHRS Certification # E83239/83353

Reviewed by:

210 Park Road Oviedo, FL 32765 PHONE: 407-359-7194 Report of Analysis

CLIENT NAME: Tetra Tech NUS, Inc. PROJECT NAME: Truck Fill Stand PROJECT NUMBER: 7586

PROJECT NUMBER: 7586 DATE RECEIVED: 12/03/1998

Lab Reference Number :

98120026-3

Client Sample ID :

A902-GW-MW7-001

Date Sampled : Sample Matrix (as Received): 12/02/1998 Water

Water

Method	Parameter	Results/Flag_Unit	sAnaly	stDate_Prep_	Date Anal	MDL_
EPA 6010	Lead, Total	9 ug/l	G G	12/07/1998	12/08/1998	3

U = Undetected. The value preceeding the 'U' is the MDL for the analyte. Results reported on a Wet Weight basis.

FDP CompQAPP # 900134G - FHRS Certification # E83239/83353

Reviewed by :

Quality Control Report for Method Blank

- - INORGANICS

Analyte	Units	Result	Flag	QC Batch	ID	Analyst
Method: EPA 6010	QC Batch: 9812RC031	Sample ID: RB-12-08-98 3	Date Prep:	12/07/1998	Date Anal: 12/08/1998	Analyst GG
Lead, Total	ug/l		U	9812RC0	31	GG

Quality Control Report for LCS Analysis

INORGANICS

					Lower	Upper
		LCS	LCS	Percent	Control	Control
Analyte		Conc	Result	Recovery	Limit	Limit
Method: EPA 6010 Lead, Total	QC Batch: 9812RC031	Sample ID: LCS 100 ug/l	Date Prep: 12/07/1998 Da 0 105	te Anal: 12/08/1998 105	Analyst: GG 85	117

Quality Control Report for Duplicate Analysis

INORGANICS

			Sample	Dupe		Control	
Analyte			Result	Result	RPD	Limit	
Method: EPA 6010 Lead, Tota	QC Batch: 9812RC031	Sample ID: 98120026-2 ug/l	Date Prep: 1 0	2/07/1998 Da 0	te Anal: 12/08/1998 0	Analyst: GG 25	

Quality Control Report for Spike Analysis

INORGANICS

Analyte		Spike Amount	Sample Result	Spike Result	Percent Recovery	Lower Control Limit	Upper Control Limit
Method: EPA 6010 Lead, Total	QC Batch: 9812RC031	Sample ID: 9812026-2 100 ug/l	Date Prep: 12/ 0	07/1998 D 95	ate Anal: 12/08/1998 95	Analyst: GG 78	115

13030

PC&B Environmental

210 Park Road, Oviedo, FL 32765

Chain of Custody

Work Order: 98/20026

WHITE: Project File

YELLOW: Laboratory PINK: Sampler

407	359-7194	(FAX)	407-359	- 7197				ノ!	Iai	11'	<u> </u>		13		Y		Date:	12	2 99	5	Pag	е	_of	
COM	PANY: TETR	A TEC	H NUS	INC											ANALY	SIS REC	QUESTE	D			منصدييي	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
ADDF	RESS:							-				1239.2												
	TAL	LAHA	SSEE,	FL.		,			8	0	₹ ~	23	29											ers
SAME	PLED BY: LUOBANG	1 SKIP	SIGN:	lucys	nt	r-			8021	633	مَ يُن	£ PA 6010/2	Fr-920											of Containers
PHON		'	FAX:	V	•				W 00			. 9												er of C
#	SAMPLE ID		DATE	E/TIME	AIR	WATE	SCILISOLID	ORG. LIQUD	Hey	454	they	H103	1401		PF	ESERVA1	IDN							Number
1	A902-GW-MW1	-001	12.2.98	1 450		X			2	ı	2	١	1											7
2	A902-GW-MW2	2-001	12.2.98	1/63/		X			2	[a	1	1				ļ							1
3	A902-GW-MW	7-001	12.2.98	1716	_	X	_		2	'	ን	1	1				<u> </u>					\vdash		7
4				<i>)</i>	-							ļ							-	_				
5 6					-			ļ									 			 	-			
7				-1-170- AA-14A-8-1874	-		+	-									 			+		\vdash		
8					╁												<u> </u>		-	+				
9	,													 						-				
10					T									1					1					
11																								
12																	i							
13					L									:										
RELI	NQUISHED BY		DATE/TIME	RECÆIVI	ED B	<u> </u>	1			DATE/		PROJEC	T NAME:	PROJE	CT INFO	ORMATI	ON				SAMPLE	RECEIP	<u>T</u>	
3	Pair	4/2	3/98	1 lu		San		•	11	1 26 0	18			KFIU	STAN	1			T	otal # of	Contain	ers		
2:	rele Osanbur.	12/2/	18 1800	2:		<u>U</u>				10/3/	38	PROJEC*		86					C	hain of (Custody	Seals		
3:				3:						,,		SITE ADD	Nas 1	Key w	EST				R	ecv'd in	Good C	ondition		
SPECI	AL INSTRUCTIONS/COMME	NTS:										PROJECT	MANAG	GER: 1	16m)				PC	O #:				
(91088											INVOIC	E TO:											
	- v -										ŀ			·			<u>.</u>	·						\dashv
QUO	TE/CONTR/			·																				

210 Park Road, Oviedo, Florida 32765 Phone: 407-359-7194 Fax: 407-359-7197

02-15-1999

Paul Calligan
Tetra Tech NUS, Inc.
1311 Executive Center Drive, Ste. 220
Tallahassee, FL 32301-

Dear Paul Calligan:

Enclosed are the results of the analysis of your samples received 09/01/1998.

Our laboratory is certified by the Florida DHRS (Lab #E83239) and operates under an FDEP approved Comprehensive Quality Assurance Plan (#900134G). Unless otherwise noted, all results are reported as received. All data were determined in accordance with published procedures (EPA-600/4-79-020), Methods for Chemical Analysis of Water and Wastes, Revised March 1983 and/or Standard Methods for the examination of Water and Wastewater, 18th Edition 1989 and/or Test Methods for Evaluating Solid Waste (EPA-SW-846, Revised January 1995), unless stated otherwise in our CompQapp under method modifications.

If you have any questions, please do not hesitate to give me a call.

Sincerely,

Beckie J. Burdick Laboratory Manager

210 Park Road, Oviedo, Florida 32765 Phone: 407-359-7194 Fax: 407-359-7197

Client:

Tetra Tech NUS, Inc.

Contact: Paul Calligan

1311 Executive Center Drive, Ste. 220

Phone:

(850) 656-5458

Tallahassee, FL 32301-

Laboratory Reference Number: 98090003

Project Name: NAS Key West

Project Number: 7586

Chain of Custody: 3145

Sample temperature at time of receipt: 4 degrees C

Laboratory ID	Matrix	Client ID	Status	Date/Time Sampled
98090003-1	Water	A90Z-GW-MW07	RUN	08/28/1998 17:00
98090003-2	Water	A9OZ-GW-MW06	RUN	08/29/1998 10:45
98090003-3	Water	A9OZ-GW-MW03	RUN	08/29/1998 12:30
98090003-4	Water	A9OZ-GW-MW05	RUN	08/29/1998 15:30
98090003-5	Water	A9OZ-GW-MW04	RUN	08/29/1998 16:25
98090003-6	Water	A9OZ-GW-MW02	RUN	08/29/1998 17:25
98090003-7	Water	A90Z-GW-MWD08	RUN	08/30/1998 11:20
98090003-8	Water	A90Z-GW-MW01	RUN	08/30/1998 12:30
98090003-9	Water	A9OZ-GW-DUP	RUN	08/30/1998
98090003-10	Water	A9OZ-GW-EQ	RUN	08/30/1998 12:20
98090003-11	Water	A9OZ-T.B.	RUN	08/30/1998

Number	Parameter	Description
11	Group Test	EPA 601/602 Volatile Organics
10	EPA 504	EDB/DBCP
3	SOP 3.50	Light Hydrocarbons in Water
10	EPA 8310	PAH's by HPLC
10	FL-PRO	Petroleum Hydrocarbons
10	EPA 6010	Lead by ICAP
3	EPA 353.3	Nitrate ·
3	EPA 354.1	Nitrite
3	EPA 375.4	Sulfate

210 Park Road Oviedo, FL 32765 407-359-7194 - (FAX) 359-7197

Case Narrative

Paul Calligan Tetra Tech NUS, Inc. 1311 Executive Center Drive, Ste. 220 Tallahassee, FL 32301-

CASE NARRATIVE for Work Order: 98090003

Project Number: 7586

Project Name: NAS Key West

This Case Narrative is a summary of events and/or problems encountered with this Work Order.

Due to high levels of hydrocarbons in the samples the HPLC 8310 analysis for PAH's was unusable. The 8310 PAH samples were analysed by the GC 8100 method.

Definition of Flags

- No surrogate result due to dilution or matrix interference. DL

- Stribgate result due to diduction of many interference.

 Estimated Value, value not accurate.

 Off-scale high. Actual value is greater than value given.

 Sample held beyond the accepted holding time.

 Value reported is less than the laboratory method detection limit.
- Analyte was both detected in the method blank and sample.

QC Batch Summary

Paul Calligan
Tetra Tech NUS, Inc.
1311 Executive Center Drive, Ste. 220
Tallahassee, FL 32301-

QC BATCH SUMMARY for Work Order: 98090003

Project Number: 7586

Project Name: NAS Key West

Method	SubNum	QC Batch
EPA 602/8021 - Arom	atic Volatile Organics	3
	-1	9809MS2002
	-2	9809MS2002
	-3	9809MS2002
	-4	9809MS2002
	-5	9809MS2002
	-6	9809MS2002
	-7	9809MS2002
	-8	9809MS2002
	-9	9809MS2002
	-10	9809MS2002
	-11	9809MS2002
EPA 504 - EDB/DBCF		
	-1	9809EDB002
	-2	9809EDB002
	-3	9809EDB002
	-4	9809EDB002
	-5	9809EDB002
	-6	9809EDB002
	-7	9809EDB002
	· -8	9809EDB002
	-9	9809EDB002
	-10	9809EDB002
EPA 601/8021 - Halo	genated Volatile Orga	nics
	-1	9809MS2002
	-2	9809MS2002
	-3	9809MS2002
	-4	9809MS2002
	-5	9809MS2002
	-6	9809MS2002
	-7	9809MS2002
	-8	9809MS2002

QC Batch Summary

Paul Calligan
Tetra Tech NUS, Inc.
1311 Executive Center Drive, Ste. 220
Tallahassee, FL 32301-

QC BATCH SUMMARY for Work Order: 98090003

Project Number: 7586

Project Name: NAS Key West

Method	SubNum	QC Batch
	-9	9809MS2002
	-10	9809MS2002
	-11	9809MS2002
EPA 6010 - Lead by ICAP		
	-1	9809RC024
	-2	9809RC024
	-3	9809RC024
	-4	9809RC024
	-5	9809RC024
	-6	9809RC024
	-7	9809RC024
	-8	9809RC024
	-9	9809RC024
	-10	9809RC024
SOP 3.50 - Light Hydrocarbo	ns in Water	
	-2	QC0722
	-3	QC0722
	-4	QC0722
EPA 353.3 - Nitrate		
	-2	9809NO3015
	-3	9809NO3015
	-4	9809NO3015
EPA 354.1 - Nitrite		
	-2	9809NO2006
	-3	9809NO2006
	-4	9809NO2006
EPA 8310 - PAH's by HPLC		
•	-1	9809PAH008
	-2	9809PAH008
	-3	9809PAH008
	-4	9809PAH008
	-5	9809PAH008

QC Batch Summary

Paul Calligan
Tetra Tech NUS, Inc.
1311 Executive Center Drive, Ste. 220
Tallahassee, FL 32301-

QC BATCH SUMMARY for Work Order: 98090003

Project Number: 7586

Project Name: NAS Key West

Method	SubNum	QC Batch
	-6	9809PAH008
	-7	9809PAH008
	-8	9809PAH008
	-9	9809PAH008
•	-10	9809PAH008
FL-PRO - Petroleum Hydrocarb	ons	
	-1	9809FLRO011
	-2	9809FLRO011
	-3	9809FLRO011
	-4	9809FLRO011
	-5	9809FLRO011
	-6	9809FLRO011
	-7	9809FLRO011
	-8	9809FLRO011
	-9	9809FLRO011
	-10	9809FLRO011
EPA 375.4 - Sulfate		
	-2	9809SO4009
	-3	9809SO4009
	-4	9809SO4009

210 Park Road Oviedo, FL 32765 PHONE: 407-359-7194 FAX: 359-7197 Aromatic Volatile Organics

CLIENT NAME: Tetra Tech NUS, Inc. PROJECT NAME: NAS Key West PROJECT NUMBER: 7586 DATE RECEIVED: 09/01/1998 ANALYTICAL PROTOCOL: EPA 602/8021

98090003-1	98090003-2	98090003-3	98090003-4	98090003-5
A90Z-GW-MW07	A90Z-GW-MW06	A9OZ-GW-MW03	A9OZ-GW-MW05	A9OZ-GW-MW04
				08/29/1998
09/01/1998				09/01/1998
09/01/1998				09/01/1998
				Water
GCMS	GCMS	GCMS	GCMS	GCMS
1	1	1	1	1
ug/l	ug/l	ug/l	ug/l	ug/l
25.6	1.0 U			1.7
1.0 U	1.0 U	1.0 U	1.0 U	. 1.0 U
1.0 U	1.0 U	1.0 U		1.0 U
1.0 U	1.0 U	1.0 U		1.0 U
1.0 U	1.0 U	1.0 U		
38.4	1.0 U	1.0 U		1.0 U
5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
1.0 U	1.0 U	1.0 U		1.0 U
2.5	1.0 U	1.0 U	1.0 U	1.0 U
1.0 U	1.0 U	1.0 U	1.5	1.0 U
	A9OZ-GW-MW07 08/28/1998 09/01/1998 09/01/1998 Water GCMS 1 ug/l 25.6 1.0 U 1.0 U 1.0 U 1.0 U 38.4 5.0 U 1.0 U	A9OZ-GW-MW07 08/28/1998 09/01/1998 09/01/1998 09/01/1998 09/01/1998 Water GCMS GCMS 1 1 ug/l 25.6 1.0 U	A9OZ-GW-MW07 08/28/1998 09/01/199	A9OZ-GW-MW07 A9OZ-GW-MW06 A9OZ-GW-MW03 A9OZ-GW-MW05 A9OZ-GW-MW05<

PC&B Environmental Laboratories, Inc. 210 Park Road Oviedo, FL 32765 PHONE: 407-359-7194 FAX: 359-7197

Aromatic Volatile Organics

CLIENT NAME: Tetra Tech NUS, Inc. PROJECT NAME: NAS Key West PROJECT NUMBER: 7586

DATE RECEIVED: 09/01/1998
ANALYTICAL PROTOCOL: EPA 602/8021

	ANALYTICAL PROTOCOL: EPA 602/8021						
98090003-6		98090003-8	98090003-9	98090003-10			
A9OZ-GW-MW02	A90Z-GW-MWD08	A90Z-GW-MW01	A9OZ-GW-DUP	A9OZ-GW-EQ			
08/29/1998	08/30/1998	08/30/1998	08/30/1998	08/30/1998			
09/01/1998	09/01/1998	09/01/1998	09/01/1998	09/01/1998			
09/01/1998	09/01/1998	09/01/1998	09/01/1998	09/01/1998			
Water	Water	Water	Water	Water			
GCMS	GCMS	GCMS	GCMS	GCMS			
1	1	1	1	1			
ug/l	ug/l	ug/l	ug/l	ug/l			
3.5	1.0 U	1.0 U	1.0 U	1.0 U			
1.0 U	1.0 U	1.0 U	1.0 U	1.0 U			
1.0 U	1.0 U	1.0 U	1.0 U	1.0 U			
1.0 U	1.0 U	1.0 U	1.0 U	1.0 U			
1.0 U	1.0 U	1.0 U	1.0 U	1.0 U			
1.0 U	1.0 U	1.0 U	1.0 U	1.0 U			
5.0 U	5.0 U	5.0 U		5.0 U			
1.0 U	1.0 U	1.0 U		1.0 U			
				1.0 U			
				1.0 U			
	A9OZ-GW-MW02 08/29/1998 09/01/1998 09/01/1998 Water GCMS 1 1 09/1 3.5 1.0 U 1.0 U 1.0 U 1.0 U 5.0 U 1.0 U	A9OZ-GW-MW02 A90Z-GW-MWD08 08/29/1998 08/30/1998 09/01/1998 09/01/1998 09/01/1998 09/01/1998 Water Water GCMS GCMS 1 1 1 ug/l ug/l 3.5 1.0 U 1.0 U 1.0 U	98090003-6 98090003-7 98090003-8 A9OZ-GW-MW02 A9OZ-GW-MWD08 A9OZ-GW-MW01 08/29/1998 08/30/1998 08/30/1998 09/01/1998 09/01/1998 09/01/1998 09/01/1998 09/01/1998 09/01/1998 Water Water Water GCMS GCMS 1 1 1 1 ug/l ug/l ug/l ug/l ug/l 3.5 1.0 U	98090003-6 98090003-7 98090003-8 98090003-9 A90Z-GW-MW02 A90Z-GW-MWD08 A90Z-GW-MW01 A90Z-GW-DUP 08/29/1998 08/30/1998 08/30/1998 09/01/1998 09/01/1998 09/01/1998 09/01/1998 09/01/1998 09/01/1998 O9/01/1998 09/01/1998 09/01/1998 09/01/1998 Water Water Water Water GCMS GCMS GCMS 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			

PC&B Environmental Laboratories, Inc. 210 Park Road Oviedo, FL 32765 PHONE: 407-359-7194 FAX: 359-7197

Aromatic Volatile Organics

CLIENT NAME: Tetra Tech NUS, Inc. PROJECT NAME: NAS Key West PROJECT NUMBER: 7586 DATE RECEIVED: 09/01/1998
ANALYTICAL PROTOCOL: EPA 602/8021

FAA. 339-7197		ANALYTICAL PROTOCOL: EPA 602/8021
Lab Reference Number	98090003-11	
Client Sample ID	A9OZ-T.B.	
Date Sampled	08/30/1998	
Date Extracted	09/01/1998	
Date Analyzed	09/01/1998	
Sample Matrix (as Received)	Water	
Analysis Confirmed	GCMS	
Dilution Factor	· 1	
Result Units	ug/l	
Benzene	1.0 U	
Chlorobenzene	1.0 U	
1,2-Dichlorobenzene	1.0 U	
1,3-Dichlorobenzene	1.0 Ŭ	
1,4-Dichlorobenzene	1.0 U	
Ethylbenzene	1.0 U	
MTBE	5.0 U	
Toluene	1.0 U	
m & p-Xylenes	1.0 U	
o-Xylene	1.0 U	

Quality Control Report for Spike/Spike Duplicate Analysis

Aromatic Volatile Organics

-Matrix: Water

Lab Sample ID: MW-QC

Analysis Date: 09/01/1998
Preparation Date: 09/01/1998

QC Batch ID: 9809MS2002

Method: EPA 602

Spike Units: ug/l

Analyst: NM

Analyte	Spike Amount	Sample Result	Spike Result	Spike Percent Recovery	MSD Result	MSD Percent Recovery	RPD
Benzene	50.0	0.0	57.0	114	59.0	118	3
Ethylbenzene	50.0	0.0	54.0	108	53.0	106	2
MTBE	50.0	0.0	56.0	112	61.0	122	9
Toluene	50.0	0.0	58.0	116	58.0	116	0
m & p-Xylenes	100.0	0.0	104.0	104	100.0	100	4
o-Xviene	50.0	0.0	53.0	106	51.0	102	4

Quality Control Limits

	Lower	Upper	
Analyte	Limit	Limit	RPD
Benzene	60	144	14
Ethylbenzene	68	133	18
MTBE	58	140	18
Toluene	66	130	15
m & p-Xylenes	68	128	16
o-Xviene	50	131	15

Quality Control Report for LCS/LCS Duplicate Analysis

Aromatic Volatile Organics

Matrix: Water

Analysis Date: 09/01/1998

Lab Sample ID: LCS

Preparation Date: 09/01/1998

QC Batch ID: 9809MS2002

Method: EPA 602

LCS Units: ug/l

Analyst: NM

	LCS		LCS	LCS Percent	LCSD	LCSD Percent	
Analyte	Conc		Result	Recovery	Result	Recovery	RPD
Benzene	25.0	0.0	27.0	108	26.0	104	4
Ethylbenzene	25.0	0.0	29.0	116	29.0	116	0
MTBE	25.0	0.0	24.0	96	25.0	100	4
Toluene	25.0	0.0	27.0	108	27.0	108	0
m & p-Xylenes	50.0	0.0	59.0	118	57.0	114	3
o-Xylene	25.0	0.0	30.0	120	29.0	116	3

Quality Control Limits

	Lower	Upper	
Analyte	Limit	Limit	RPD
Benzene	52	148	4
Ethylbenzene	50	143	7
MTBE	51	154	7
Toluene	46	152	5
m & p-Xylenes	44	146	6
o-Xylene	47	146	5

Quality Control Report for Method Blank

Aromatic Volatile Organics

Matrix: Water

Analysis Date: 09/01/1998

Lab Sample ID: RB-09-01-98

Preparation Date: 09/01/1998

QC Batch ID: 9809MS2002

Method: EPA 602

Result Units: ug/l

Analyst: NM

Analyte	Result	Flag	Analyte	Result	Flag
Benzene	1.0	U	Chlorobenzene	1.0	U
1,2-Dichlorobenzene	1.0	U	1,3-Dichlorobenzene	1.0	U
1,4-Dichlorobenzene	1.0	U	Ethylbenzene	1.0	U
MTBE	5.0	U	Toluene	1.0	U
m & p-Xylenes	1.0	U	o-Xylene	1.0	U

210 Park Road Oviedo, FL 32765 PHONE: 407-359-7194 FAX: 359-7197

EDB/DBCP

CLIENT NAME: Tetra Tech NUS, Inc. PROJECT NAME: NAS Key West PROJECT NUMBER: 7586

DATE RECEIVED: 09/01/1998 ANALYTICAL PROTOCOL: EPA 504

Lab Reference Number	98090003-1	98090003-2	98090003-3	98090003-4	98090003-5
Client Sample ID	A9OZ-GW-MW07	A9OZ-GW-MW06	A9OZ-GW-MW03	A90Z-GW-MW05	A90Z-GW-MW04
Date Sampled	08/28/1998	08/29/1998	08/29/1998	08/29/1998	08/29/1998
Date Extracted	09/03/1998	09/03/1998	09/03/1998	09/03/1998	09/03/1998
Date Analyzed	09/03/1998	09/03/1998	09/03/1998	09/03/1998	09/03/1998
Sample Matrix (as Received)	Water	Water	Water	Water	Water
Analysis Confirmed	No	No	No	No	No
Dilution Factor	1	1	1	1	1
Result Units	ug/l	ug/i	ug/l	ug/l	ug/l
Ethylene dibromide (EDB)	0.02 U				
1,2-Dibromo-3-chloropropane	0.1 U				

U = Undetected. The value preceeding the 'U' is the MDL for the analyte, based on dilution. Results reported on a Wet Weight basis.

FDEP CompQAPP # 900134G - FHRS Certification # E83239/83353

Reviewed by:

210 Park Road Oviedo, FL 32765 PHONE: 407-359-7194 EDB/DBCP

CLIENT NAME: Tetra Tech NUS, Inc. PROJECT NAME: NAS Key West PROJECT NUMBER: 7586 DATE RECEIVED: 09/01/1998

ANALYTICAL PROTOCOL: EPA 504 FAX: 359-7197 98090003-9 98090003-10 98090003-8 98090003-6 98090003-7 Lab Reference Number A90Z-GW-MW01 A9OZ-GW-DUP A9OZ-GW-EQ A9OZ-GW-MW02 A90Z-GW-MWD08 Client Sample ID

Date Sampled	08/29/1998	08/30/1998	08/30/1998	08/30/1998	08/30/1998
Date Extracted	09/03/1998	09/03/1998	09/03/1998	09/03/1998	09/03/1998
Date Analyzed	09/03/1998	09/03/1998	09/03/1998	09/03/1998	09/03/1998
Sample Matrix (as Received)	Water	Water	Water	Water	Water
Analysis Confirmed	No	No	No	No	No
Dilution Factor	. 1	1	1	1	1
Result Units	ug/l	ug/l	ug/l	ug/l	ug/l
Ethylene dibromide (EDB)	0.02 U				
1,2-Dibromo-3-chloropropane	0.1 U				

Quality Control Report for Spike Analysis

EDB/DBCP

Matrix: Water

Analysis Date: 09/03/1998

Lab Sample ID: 9809003-2

Preparation Date: 09/03/1998

QC Batch ID: 9809EDB002

Method: EPA 504

Spike Units: ug/l

Analyst: ELA

Analyte	Spike Amount	Sample Result	Spike Result	Percent Recovery	Lower Control Limit	Upper Control Limit
Ethylene dibromide (EDB)	1.00	0.00	0.83	83	48	135
1,2-Dibromo-3-chloropropane	1.0	0.0	0.9	86	43	134

Quality Control Report for LCS/LCS Duplicate Analysis

EDB/DBCP

Matrix: Water

Lab Sample ID: LCS

QC Batch ID: 9809EDB002

LCS Units: ug/l

Analysis Date: 09/03/1998

Preparation Date: 09/03/1998

Method: EPA 504

Analyst: ELA

Analyte	LCS Conc		LCS LCS Percent Result Recovery		LCSD Result	LCSD Percent Recovery	RPD	
Ethylene dibromide (EDB)	1.00	0.00	0.85	85	0.78	78	9	
1 2-Dibromo-3-chloropropane	1.0	0.0	0.9	85	8.0	78	9	

Quality Control Limits

Analyte	Lower Limit	Upper Limit	RPD
Ethylene dibromide (EDB)	75	120	20
1,2-Dibromo-3-chloropropane	75	120	20

Quality Control Report for Method Blank

EDB/DBCP

Matrix: Water

Analysis Date: 09/03/1998

Lab Sample ID: RB-09-03-98

Preparation Date: 09/03/1998

QC Batch ID: 9809EDB002

Method: EPA 504

Result Units: ug/l

Analyst: ELA

Analyte	Result	Flag	Analyte	Result Flag
Ethylene dibromide (EDB)	0.02	U	1,2-Dibromo-3-chloropropane	0.1 U

210 Park Road Oviedo, FL 32765 PHONE: 407-359-7194 FAX: 359-7197 Halogenated Volatile Organics

CLIENT NAME: Tetra Tech NUS, Inc. PROJECT NAME: NAS Key West PROJECT NUMBER: 7586 DATE RECEIVED: 09/01/1998

ANALYTICAL PROTOCOL: EPA 601/8021

FAX: 359-7197			ANALYTICAL F	PROTOCOL: EPA 60	1/8021
Lab Reference Number	98090003-1	98090003-2	98090003-3	98090003-4	98090003-5
Client Sample ID	A9OZ-GW-MW07	A9OZ-GW-MW06	A9OZ-GW-MW03	A9OZ-GW-MW05	A9OZ-GW-MW04
Date Sampled	08/28/1998	08/29/1998	08/29/1998	08/29/1998	08/29/1998
Date Extracted	09/01/1998	09/01/1998	09/01/1998	09/01/1998	09/01/1998
Date Analyzed	09/01/1998	09/01/1998	09/01/1998	09/01/1998	09/01/1998
Sample Matrix (as Received)	Water	Water	Water	Water	Water
Analysis Confirmed	GCMS	GCMS	GCMS	GCMS	GCMS
Dilution Factor	1 ug/l	1 ug/l	1 ug/l	الصيا	1
Result Units Bromobenzene	1.0 U	1.0 U	1.0 U	ug/l 1,0 U	ug/l 1.0 U
Bromodichloromethane	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Bromoform	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Bromomethane	1.0 U	1.0 U	1.0 U	1.0 U	
Carbon tetrachloride					
Chlorothere	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U		1.0 U
Chloroethane	1.0 U	1.0 U	1.0 U		1.0 U 1.0 U
2-Chloroethyl vinyl ether					
Chloroform	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Chloromethane	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Dibromochloromethane	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Dibromomethane	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dichlorobenzene	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,3-Dichlorobenzene	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,4-Dichlorobenzene	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,1-Dichloroethane	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Dichlorodifluoromethane	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dichloroethane	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,1-Dichloroethene	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
trans-1,2-Dichloroethene	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dichloropropane	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
cis-1,3-Dichloropropene	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
trans-1,3-Dichloropropene	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Methylene chloride	1.4 V	1.0 U	1.0 U	1.0 U	1.0 U
1,1,2,2-Tetrachloroethane	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,1,1,2-Tetrachloroethane	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Tetrachloroethene	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,1,1-Trichloroethane	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,1,2-Trichloroethane	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Trichloroethene	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Trichlorofluoromethane	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,2,3-Trichloropropane	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Vinyl chloride	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
cis-1,2-Dichloroethene	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
•					•

PC&B Environmental Laboratories, Inc.

210 Park Road Oviedo, FL 32765 PHONE: 407-359-7194

FAX: 359-7197

Halogenated Volatile Organics

CLIENT NAME: Tetra Tech NUS, Inc. PROJECT NAME: NAS Key West PROJECT NUMBER: 7586
DATE RECEIVED: 09/01/1998
ANALYTICAL PROTOCOL: EPA 601/8021

Tion.					TO TOODE. ET /TOOT	OUZI
,	Lab Reference Number	98090003-6	98090003-7	98090003-8	98090003-9	98090003-10
	Client Sample ID	A9OZ-GW-MW02	A90Z-GW-MWD08	A90Z-GW-MW01	A9OZ-GW-DUP	A9OZ-GW-EQ
	Date Sampled	08/29/1998	08/30/1998	08/30/1998	08/30/1998	08/30/1998
	Date Extracted	09/01/1998		09/01/1998	09/01/1998	09/01/1998
	Date Analyzed	09/01/1998	09/01/1998	09/01/1998	09/01/1998	09/01/1998
	Sample Matrix (as Received)	Water	Water	Water	Water	Water
	Analysis Confirmed Dilution Factor	GCMS	GCMS	GCMS	GCMS	GCMS
	Result Units	ug/l	1 ug/l	1 ug/l	1	. 1
	Bromobenzene	1.0 U		1.0 U	ug/l 1.0 U	ug/l 1.0 U
	Bromodichloromethane	1.0 U		1.0 U	1.0 U	1.0 U
	Bromoform	1.0 U		1.0 U	1.0 U	1.0 U
	Bromomethane	1.0 U		1.0 U	1.0 U	1.0 U
	Carbon tetrachloride	1.0 U		1.0 U	1.0 U	1.0 U
	Chlorobenzene	1.0 U		1.0 U	1.0 U	1.0 U
	Chloroethane	1.0 U		1.0 U	1.0 U	1.0 U
	2-Chloroethyl vinyl ether	1.0 U		1.0 U	1.0 U	1.0 U
	Chloroform	1.0 U		1.0 U	1.0 U	1.0 U
	Chloromethane	1.0 U		1.0 U	1.0 U	1.0 U
	Dibromochloromethane	1.0 U		1.0 U	1.0 U	1.0 U
	Dibromomethane	1.0 U		1.0 U	1.0 U	1.0 U
	1,2-Dichlorobenzene	1.0 U		1.0 U	1.0 U	1.0 U
	1,3-Dichlorobenzene	1.0 U		1.0 U	1.0 U	1.0 U
	1,4-Dichlorobenzene	1.0 U		1.0 U	1.0 U	1.0 U
	1,1-Dichloroethane	1.0 U		1.0 U	1.0 U	1.0 U
	Dichlorodifluoromethane	1.0 U		1.0 U	1.0 U	1.0 U
	1,2-Dichloroethane	1.0 U		1.0 U	1.0 U	1.0 U
	1,1-Dichloroethene	1.0 U		1.0 U	1.0 U	1.0 U
	trans-1,2-Dichloroethene	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
	1,2-Dichloropropane	1.0 U		1.0 U	1.0 U	1.0 U
Street,	cis-1,3-Dichloropropene	1.0 U		1.0 U	1.0 U	1.0 U
-	trans-1,3-Dichloropropene	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
	Methylene chloride	1.0 U	1.0 U	1.0 U	1.0 U	1.2 V
	1,1,2,2-Tetrachloroethane	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
	1,1,1,2-Tetrachloroethane	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
	Tetrachloroethene	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
	1,1,1-Trichloroethane	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
	1,1,2-Trichloroethane	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
	Trichloroethene	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
	Trichlorofluoromethane	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
	1,2,3-Trichloropropane	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
	Vinyl chloride	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
	cis-1,2-Dichloroethene	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U

U = Undetected. The value preceeding the 'U' is the MDL for the analyte, based on dilution. Results reported on a Wet Weight basis. FDEP CompQAPP # 900134G - FHRS Certification # E83239/83353

PC&B Environmental Laboratories, Inc.
210 Park Road
Oviedo, FL 32765
PHONE: 407-359-7194

Halogenated Volatile Organics

CLIENT NAME: Tetra Tech NUS, Inc. PROJECT NAME: NAS Key West PROJECT NUMBER: 7586 DATE RECEIVED: 09/01/1998

PHONE: 407-359-7194		DATE RECEIVED: 09/01/1998				
FAX: 359-7197		ANALYTICAL PROTOCOL: E	PA 601/8021			
Lab Reference Number	98090003-11					
Client Sample ID	A9OZ-T.B.					
Date Sampled	08/30/1998					
Date Extracted	09/01/1998					
Date Analyzed	09/01/1998 Water					
Sample Matrix (as Received) Analysis Confirmed	GCMS					
Dilution Factor	1 de la companya de l					
Result Units	ug/l					
Bromobenzene	1.0 U					
Bromodichloromethane	1.0 U					
Bromoform	1.0 U					
Bromomethane	1.0 U					
Carbon tetrachloride	1.0 U					
Chlorobenzene	1.0 U					
Chloroethane	1.0 U					
2-Chloroethyl vinyl ether	1.0 U					
Chloroform	1.0 U					
Chloromethane	1.0 U					
Dibromochloromethane	1.0 U					
Dibromomethane	1.0 U					
1,2-Dichlorobenzene	1.0 U					
1,3-Dichlorobenzene	1.0 U					
1,4-Dichlorobenzene	1.0 U					
1,1-Dichloroethane	1.0 U					
Dichlorodifluoromethane	1.0 U					
1,2-Dichloroethane	1.0 U					
1,1-Dichloroethene	1.0 U					
trans-1,2-Dichloroethene	1.0 U					
1,2-Dichloropropane	1.0 U					
cis-1,3-Dichloropropene	1.0 U					
trans-1,3-Dichloropropene	1.0 U					
Methylene chloride	2.7 V					
1,1,2,2-Tetrachioroethane	1.0 U					
1,1,1,2-Tetrachloroethane	1.0 U					
Tetrachloroethene	1.0 U					
1,1,1-Trichloroethane	1.0 U					
1,1,2-Trichloroethane	1.0 U					
Trichloroethene	1.0 U					
Trichlorofluoromethane	1.0 U					
1,2,3-Trichloropropane	1.0 U					
Vinyl chloride	1.0 U					
cis-1,2-Dichloroethene	1.0 U					

Quality Control Report for Spike/Spike Duplicate Analysis

Halogenated Volatile Organics

Matrix: Water

Analysis Date: 09/01/1998

Lab Sample ID: MW-QC

Preparation Date: 09/01/1998

QC Batch ID: 9809MS2002

Method: EPA 601

Spike Units: ug/l

Analyst: NM

				Spike		MSD		
A 5.4.	Spike	Sample	Spike	Percent	MSD	Percent	DDD	
Analyte	Amount	Result	Result	Recovery	Result	Recovery	RPD	
Carbon tetrachloride	50.0	0.0	51.0	102	52.0	104	2	
Chlorobenzene	50.0	0.0	55.0	110	54.0	108	2	
1,4-Dichlorobenzene	50.0	0.0	54.0	108	56.0	112	4	
1,1-Dichloroethene	50.0	0.0	58.0	116	57.0	114	2	
Trichloroethene	50.0	0.0	58.0	116	60.0	120	3 _	

Quality Control Limits

	Lower	Upper	
Analyte	Limit	Limit	RPD
Carbon tetrachloride	66	134	11
Chlorobenzene	69	127	15
1,4-Dichlorobenzene	69	134	11
1,1-Dichloroethene	60	132	15
Trichloroethene	68	129	15

Quality Control Report for LCS/LCS Duplicate Analysis

Halogenated Volatile Organics

Matrix: Water

Analysis Date: 09/01/1998

Lab Sample ID: LCS

Preparation Date: 09/01/1998

QC Batch ID: 9809MS2002

Method: EPA 601

LCS Units: ug/l

Analyst: NM

Analyte	LCS Conc		LCS Result	LCS Percent Recovery	LCSD Result	LCSD Percent Recovery	RPD
Carbon tetrachloride	25.0	0.0	21.0	84	20.0	80	5
Chlorobenzene	25.0	0.0	29.0	116	29.0	116	0
1,4-Dichlorobenzene	25.0	0.0	27.0	108	27.0	108	0
1.1-Dichloroethene	25.0	0.0	23.0	92	23.0	92	. 0
Trichloroethene	25.0	0.0	25.0	100_	26.0	104	4

Quality Control Limits

Analyte	Lower Limit	Upper Limit	RPD
Carbon tetrachloride	51	134	4
Chlorobenzene	59	147	4
1,4-Dichlorobenzene	57	145	4
1,1-Dichloroethene	46	150	7
Trichloroethene	48	148	6

Quality Control Report for Method Blank

Halogenated Volatile Organics

Matrix: Water

Analysis Date: 09/01/1998

Lab Sample ID: RB-09-01-98

Preparation Date: 09/01/1998

QC Batch ID: 9809MS2002

Method: EPA 601

Result Units: ug/l

Analyst: NM

Analyte	Result	Flag	Analyte	Result	Flag
Bromobenzene	1.0	U	Bromodichloromethane	1.0	U
Bromoform	1.0	U	Bromomethane	1.0	U
Carbon tetrachloride	1.0	U	Chlorobenzene	1.0	U
Chloroethane	1.0	U	2-Chloroethyl vinyl ether	1.0	Ū
Chloroform	1.0	U	Chloromethane	1.0	Ū
Dibromochloromethane	1.0	U	Dibromomethane	1.0	Ū
1,2-Dichlorobenzene	1.0	U	1,3-Dichlorobenzene	1.0	Ū
1,4-Dichlorobenzene	1.0	U	1,1-Dichloroethane	1.0	Ŭ
Dichlorodifluoromethane	1.0	U	1,2-Dichloroethane	1.0	Ū
1,1-Dichloroethene	1.0	U	trans-1,2-Dichloroethene	1.0	Ū
1,2-Dichloropropane	1.0	U	cis-1,3-Dichloropropene	1.0	Ü
trans-1,3-Dichloropropene	1.0	U	Methylene chloride	9.4	_
1,1,2,2-Tetrachioroethane	1.0	U	1,1,1,2-Tetrachloroethane	1.0	U
Tetrachloroethene	1.0	U	1,1,1-Trichloroethane	1.0	Ū
1,1,2-Trichloroethane	1.0	U	Trichloroethene	1.0	Ü
Trichlorofluoromethane	1.0	U	1,2,3-Trichloropropane	1.0	Ü
Vinyl chloride	1.0	U	cis-1,2-Dichloroethene	1.0	ΰ

PC&B Environmental Laboratories, Inc. 210 Park Road Oviedo, FL 32765 PHONE: 407-359-7194 FAX: 359-7197	Light Hydri	ocarbons in Water	PROJECT NAM PROJECT NUM DATE RECEIV	: Tetra Tech NUS, Inc. ME: NAS Key West MBER: 7586 (ED: 09/01/1998 PROTOCOL: SOP 3.50	
Lab Reference Number	98090003-2	98090003-3	98090003-4		
Client Sample ID	A9OZ-GW-MW06	A9OZ-GW-MW03	A9OZ-GW-MW05		
Date Sampled	08/29/1998	08/29/1998	08/29/1998		
Date Extracted	09/04/1998	09/04/1998	09/04/1998		
 Date Analyzed	09/04/1998	09/04/1998	09/04/1998		
Sample Matrix (as Received)	Water	Water	Water		
Analysis Confirmed	No	No	No		
Dilution Factor	1	1	1		
Result Units	mg/l	mg/l	mg/l		
Methane	0.480	0.282	0.144		
Ethane	0.001 U	0.001 U	0.001 U		
Ethene	0.001 U	0.001 U	0.001 U		

Daviound by:

PC&B Environmental Laboratories, Inc. 210 Park Road

Oviedo, FL 32765 PHONE: 407-359-7194 FAX: 359-7197

PAH's by HPLC

CLIENT NAME: Tetra Tech NUS, Inc. PROJECT NAME: NAS Key West PROJECT NUMBER: 7586 DATE RECEIVED: 09/01/1998 ANALYTICAL PROTOCOL: EPA 8310

- 1701. 000-1101			ANALTHUAL	ROTOCOL, EPA 83	510
Lab Reference Number	98090003-1	98090003-2		98090003-4	98090003-5
Client Sample ID	A9OZ-GW-MW07	A9OZ-GW-MW06	A9OZ-GW-MW03	A9OZ-GW-MW05	A9OZ-GW-MW04
Date Sampled	08/28/1998	08/29/1998	08/29/1998	08/29/1998	08/29/1998
Date Extracted	09/02/1998	09/02/1998	09/02/1998	09/02/1998	09/02/1998
Date Analyzed	09/04/1998	09/04/1998		09/04/1998	09/04/1998
Sample Matrix (as Received)	Water	Water	Water	Water	Water
Analysis Confirmed	Yes	Yes	Yes	Yes	Yes
Dilution Factor	1	1	1	1	1
Result Units	ug/l	ug/l	ug/l	ug/l	ug/l
Acenaphthene	5 U	5 U		5 U	5 U
Acenaphthylene	5 U	6	5 U	5 U	5 U
Anthracene	5 U	5 U	5 U	5 U	5 U
Benzo(a)anthracene	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Benzo(a)pyrene	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
Benzo(b)fluoranthene	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Benzo(ghi)perylene	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Benzo(k)fluoranthene	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
Chrysene	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
dibenzo(ah)anthracene	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Fluoranthene	5.00 U	5.00 U		5.00 U	5.00 U
Fluorene	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
Indeno(123cd)pyrene	5.00 U	5.00 U		5.00 U	5.00 U
Naphthalene	5.00 U	5.00 U	5.00 U	5.00 U	17.10
1-Methyl naphthalene	5.00 U	5.00 U	5.00 U	5.00 U	50.0
2-Methyl naphthalene	5.00 U	5.00 U	5.00 U	6.80	48.00
Phenanthrene	5,000 U	5.000 U	5.000 U	5.000 U	5.000 U
Pyrene	5.000 U	5.000 U		5.000 U	
, joine	5.500 0	3.000 0	3.000 0	5.000 0	5.000 U

PAH's by HPLC

PC&B Environmental Laboratories, Inc. 210 Park Road Oviedo, FL 32765 PHONE: 407-359-7194 FAX: 359-7197 CLIENT NAME: Tetra Tech NUS, Inc. PROJECT NAME: NAS Key West PROJECT NUMBER: 7586 DATE RECEIVED: 09/01/1998 ANALYTICAL PROTOCOL: EPA 8310

FAX: 359-7197		ANALITICAL FROTOCOL, EFA 8510						
Lab Reference Number	98090003-6	98090003-7	98090003-8	98090003-9	98090003-10			
Client Sample ID	A9OZ-GW-MW02	A90Z-GW-MWD08	A90Z-GW-MW01	A9OZ-GW-DUP	A9OZ-GW-EQ			
Date Sampled	08/29/1998	08/30/1998	08/30/1998	08/30/1998	08/30/1998			
Date Extracted	09/02/1998	09/02/1998	09/02/1998	09/02/1998	09/02/1998			
Date Analyzed	09/04/1998	09/04/1998	09/04/1998	09/04/1998	09/04/1998			
Sample Matrix (as Received)	Water	Water	Water	Water	Water			
Analysis Confirmed	Yes	Yes	Yes	Yes	Yes			
Dilution Factor	1	1	2	. 2	1			
Result Units	ug/l	ug/l	ug/l	ug/l	ug/i			
Acenaphthene	14	5 U	28	28	5 U			
Acenaphthylene	13	5 U	20	18	5 U			
Anthracene	5 U	5 U	10 U		5 U			
Benzo(a)anthracene	5.0 U	5.0 U	10.0 U	10.0 U	5.0 U			
Benzo(a)pyrene	5.00 U	5.00 U	10.00 U	10.00 U	5.00 U			
Benzo(b)fluoranthene	5.0 U	5.0 U	10.0 U	10.0 U	5.0 U			
Benzo(ghi)perylene	5.0 U	5.0 U	10.0 U	10.0 U	5.0 U			
Benzo(k)fluoranthene	5.00 U	5.00 U	10.00 U	10.00 U	5.00 U			
Chrysene	5.00 U	5.00 U	10.00 U	10.00 U	5.00 U			
dibenzo(ah)anthracene	5.0 U	5.0 U	10,0 U	10.0 U	5.0 U			
Fluoranthene	5.00 U	5.00 U	10.00 U	10.00 U	5.00 U			
Fluorene	5.00 U	5.00 U	18.00	18.00	5.00 U			
Indeno(123cd)pyrene	5.00 U	5.00 U	10.00 U	10.00 U	5.00 U			
Naphthalene	11.10	8.80	130	160	5.00 U			
1-Methyl naphthalene	13.00	16.00	180	190	5.00 U			
2-Methyl naphthalene	58.0	15.00	130	135	5.00 U			
Phenanthrene	5.000 U	5.000 U	10.000 U		5.000 U			
Pyrene	5.000 U	5.000 U	10.000 U		5.000 U			

Reviewed by :

Quality Control Report for Spike Analysis

PAH's by HPLC

Matrix: Water

Analysis Date: 09/03/1998

Lab Sample ID: 98080213-1

Preparation Date: 09/02/1998

QC Batch ID: 9809PAH008

Method: EPA 8310

Spike Units: ug/l

Analyst: DC

Analyte	Spike Amount	Sample Result	Spike Result	Percent Recovery	Lower Control Limit	Upper Control Limit
Acenaphthene	5.0	0.0	5.2	104	45	133
Acenaphthylene	5.0	0.0	4.3	86	45	133
Anthracene	5.0	0.0	5.4	108	45	133
Benzo(a)anthracene	5.0	0.0	5.5	110	45	133
Benzo(a)pyrene	5.0	0.0	5.9	118	45	133
Benzo(b)fluoranthene	5.0	0.0	5.6	112	45	133
Benzo(ghi)perylene	5.0	0.0	5.6	112	45	133
Benzo(k)fluoranthene	5.0	0.0	4.5	90	45	133
Chrysene	5.0	0.0	5.2	104	45	133
dibenzo(ah)anthracene	5.0	0.0	4.7	94	45	160
Fluoranthene	5.0	0.0	5.3	106	45	133
Fluorene	5.0	0.0	5.1	102	45	133
Indeno(123cd)pyrene	5.0	0.0	5.2	104	45	133
Naphthalene	5.0	0.0	4.4	88	45	133
Phenanthrene	5.0	0.0	5.2	104	45	133
Pyrene	5.0	0.0	5.5	110	45	133

Quality Control Report for LCS Analysis

PAH's by HPLC

Matrix: Water

Analysis Date: 09/03/1998

Lab Sample ID: LCS

Preparation Date: 09/02/1998

QC Batch ID: 9809PAH008

Method: EPA 8310

LCS Units: ug/l

Analyst: DC

				Lower	Upper
	LCS	LCS	Percent	Control	Control
Analyte	Conc	Result	Recovery	Limit	Limit
Acenaphthene	5.0	5.4	108	60	120
Acenaphthylene	5.0	4.6	92	60	120
Anthracene	5.0	5.3	106	60	120
Benzo(a)anthracene	5.0	5.5	110	60	120
Benzo(a)pyrene	5.0	5.9	118	60	120
Benzo(b)fluoranthene	5.0	5.5	110	60	120
Benzo(ghi)perylene	5.0	5.6	112	60	120
Benzo(k)fluoranthene	5.0	4.5	90	60	120
Chrysene	5.0	5.1	102	60	120
dibenzo(ah)anthracene	5.0	4.7	94	60	120
Fluoranthene	5.0	5.3	106	60	120
Fluorene	5.0	5.2	104	60	120
Indeno(123cd)pyrene	5.0	5.4	108	60	120
Naphthalene	5.0	4.6	92	60	120
Phenanthrene	5.0	5.2	104	60	120
Pyrene	5.0	5.5	110	60	120

Quality Control Report for Method Blank

PAH's by HPLC

Matrix: Water

Analysis Date: 09/04/1998

Lab Sample ID: RB-09-02

Preparation Date: 09/02/1998

QC Batch ID: 9809PAH008

Method: EPA 8310

Result Units: ug/l

Analyst: DC

Analyte			Analyte	Result	Flag
Acenaphthene	5	U	Acenaphthylene	5	U
Anthracene	5	U	Benzo(a)anthracene	5.0	U
Benzo(a)pyrene	5.00	U	Benzo(b)fluoranthene	5.0	U
Benzo(ghi)perylene	5.0	U	Benzo(k)fluoranthene	5.00	U
Chrysene	5. 00	U	dibenzo(ah)anthracene	5.0	Ú
Fluoranthene	5.00	U	Fluorene	5.00	-
Indeno(123cd)pyrene	5.00	U	Naphthalene	5.00	_
1-Methyl naphthalene	5.00	U	2-Methyl naphthalene	5.00	-
Phenanthrene	5.000	U	Pyrene	5.000	_

PC&B Environmental Laboratories, Inc.

210 Park Road Oviedo, FL 32765 PHONE: 407-359-7194 FAX: 359-7197 Petroleum Hydrocarbons

CLIENT NAME: Tetra Tech NUS, Inc. PROJECT NAME: NAS Key West

PROJECT NUMBER: 7586
DATE RECEIVED: 09/01/1998
ANALYTICAL PROTOCOL: FL-PRO

FAX: 359-7197		ANALTHCAL PROTOCOL, FE-PRO												
Lab Reference Number	98090003-1	98090003-2	98090003-3	98090003-4	98090003-5									
Client Sample ID	A9OZ-GW-MW07	A9OZ-GW-MW06	A9OZ-GW-MW03	A90Z-GW-MW05	A9OZ-GW-MW04									
Date Sampled	08/28/1998	08/29/1998	08/29/1998	08/29/1998	08/29/1998									
Date Extracted	09/02/1998	09/02/1998	09/02/1998	09/02/1998	09/02/1998									
Date Analyzed	09/02/1998	09/02/1998	09/02/1998	09/02/1998	09/02/1998									
Sample Matrix (as Received)	Water	Water	Water	Water	Water									
Analysis Confirmed	No	No	No	No	No									
Dilution Factor	1	1	1	1	1									
Result Units	mg/l	mg/l	mg/l	mg/l	mg/l									
Total PHS	0.1 U	1.8	1.0	1.1	2.8									
(Surr) C-39 (%)	91	66	69	78	128									

PC&B Environmental Laboratories, Inc.

210 Park Road Oviedo, FL 32765 PHONE: 407-359-7194 FAX: 359-7197 Petroleum Hydrocarbons

CLIENT NAME: Tetra Tech NUS, Inc. PROJECT NAME: NAS Key West PROJECT NUMBER: 7586 DATE RECEIVED: 09/01/1998 ANALYTICAL PROTOCOL: FL-PRO

FAX. 309-1191			ANALTHCALP	ROTOCOL: FL-PRO		
Lab Reference Number	98090003-6	98090003-7	98090003-8	98090003-9	98090003-10	
Client Sample ID	A9OZ-GW-MW02	A90Z-GW-MWD08	A90Z-GW-MW01	A9OZ-GW-DUP	A90Z-GW-EQ	
Date Sampled	08/29/1998	08/30/1998	08/30/1998	08/30/1998	08/30/1998	
Date Extracted	09/02/1998	09/02/1998	09/02/1998	09/02/1998	09/02/1998	
Date Analyzed	09/02/1998	09/02/1998	09/02/1998	09/02/1998	09/02/1998	
Sample Matrix (as Received)	Water	Water	Water	Water	Water	
Analysis Confirmed	No	No	No	No	No	
Dilution Factor	2	1	10	5	1	
Result Units	mg/l	mg/l	mg/l	mg/l	mg/l	
Total PHS	5.9	0.5	14.8	10.0	0.1 U	_
(Surr) C-39 (%)	55	59	0 DL	0 DL	104	

U = Undetected. The value preceeding the 'U' is the MDL for the analyte, based on dilution. Results reported on a Wet Weight basis. FDEP CompQAPP # 900134G - FHRS Certification # E83239/83353

Reviewed by .

Quality Control Report for LCS/LCS Duplicate Analysis

Petroleum Hydrocarbons

Matrix: Water

Analysis-Date: 09/02/1998-

Lab Sample ID: LCS

Preparation Date: 09/02/1998

QC Batch ID: 9809FLRO011

Method: FL-PRO

LCS Units: mg/l

Analyst: ELA

Analyte	LCS Conc		LCS Result	LCS Percent Recovery	LCSD Result	LCSD Percent Recovery	RPD
(Surr) C-39	100.0	0.0	88.0	88	87.0	87	1
Total PHS	5.0	0.0	3.6	72	4.0	80	11

Quality Control Limits

Analyte	Lower Limit	Upper Limit	RPD
SS C-39	4	140	31
Total PHS	57	110	11

Quality Control Report for Method Blank

Petroleum Hydrocarbons

Matrix: Water

Analysis Date: 09/02/1998

Lab Sample ID: RB-09-02-98

Preparation Date: 09/02/1998

QC Batch ID: 9809FLRO011

Method: FL-PRO

Result Units: mg/l

Analyst: ELA

Analyte	Result	Flag	Analyte	Result Flag
Total PHS	0.1	U	(Surr) C-39 (%)	78.0

Quality Control Report for Spike/Spike Duplicate Analysis

Petroleum Hydrocarbons

Matrix: Water

Analysis-Date: 09/02/1998

Lab Sample ID: 9808227-2

Preparation Date: 09/02/1998

QC Batch ID: 9809FLRO011

Method: FL-PRO

Spike Units: mg/l

Analyst: ELA

Analyte (Surr) C-39	Spike Amount	Sample Result	Spike Result	Spike Percent Recovery	MSD Result	MSD Percent Recovery	RPD
	100.0	0.0	69.0	69	70.0	70	1
Total PHS	5.0	0.0	4.2	84	4.3	86	2

Quality	Control	Limits
---------	---------	--------

Analyte	Lower Limit	Upper Limit	RPD		
SS_C-39	7	139	30		
Total PHS	57	110	11		

PC&B Environmental Laboratories, Inc. 210 Park Road

Report of Analysis

CLIENT NAME: Tetra Tech NUS, Inc. PROJECT NAME: NAS Key West PROJECT NUMBER: 7586 DATE RECEIVED: 09/01/1998

Oviedo, FL 32765 PHONE: 407-359-7194 Lab Reference Number Client Sample ID

98090003-1 98090003-2 A90Z-GW-MW07 A90Z-GW-MW06 A90Z-GW-MW03 A90Z-GW-MW05 A90Z-GW-MW04

98090003-3

98090003-4 98090003-5

Date Sampled Sample Matrix (a	s Received)		08/28/1998 Water	08/29/1998 Water	08/29/1998 Water	08/29/1998 Water	08/29/1998 Water
EPA 353.3	Nitrate	mg/l	NR	0.60	0.05 U	1.10	NR
EPA 354.1	Nitrite	mg/l	NR	0.02 U	0.02 U	0.02 U	NR
EPA 375.4	Sulfate	mg/l	NR	25	14	16	NR
EPA 6010	Lead, Total	ug/l	4	8	5	11	3 U

NR = Analysis not Requested.

U = Undetected. The value preceeding the 'U' is the MDL for the analyte. Results reported on a Wet Weight basis.

FDEP CompQAPP # 900134G - FHRS Certification # E83239/83353

PC&B Environmental Laboratories, Inc. 210 Park Road

Report of Analysis

CLIENT NAME: Tetra Tech NUS, Inc. PROJECT NAME: NAS Key West PROJECT NUMBER: 7586

DATE RECEIVED: 09/01/1998

Oviedo, FL 32765 PHONE: 407-359-7194 98090003-6 98090003-7 98090003-8 98090003-9 98090003-10 Lab Reference Number Client Sample ID A9OZ-GW-MW02 A90Z-GW-MWD0 A90Z-GW-MW01 A90Z-GW-DUP A9OZ-GW-EQ 8 08/30/1998 08/30/1998 08/30/1998 08/30/1998 08/29/1998 Date Sampled Water Water Water Water Sample Matrix (as Received) Water 3 U 3 U 26 25 EPA 6010 Lead, Total ug/l 4

U = Undetected. The value preceeding the 'U' is the MDL for the analyte. Results reported on a Wet Weight basis.

FDEP CompQAPP # 900134G - FHRS Certification # E83239/83353

Reviewed by:

REPORT TO A	DDRF55:	France	oot Environm		PROJEC	ANAGER: _ T NAME: _	NA	5 /	GY.	$\{\lambda^j\}$	الای الای از فرو این	j					SHIF	PEC	то					À	GE Ź	_or
TALLAHASSEE FC BRE PROJECT NO TELEPHONE: \$20.656.7409 P.O. NO.:							10.: <u>7586</u> CODE:									PC\$B, OVIEW (LABORATORY NAME, CITY)										
CHAIN O	F CUS	TODY	RECORD							I	.AB	OR	ATC	RY	Α	NALYSIS										
SAMPLED B	Y (PRINT	D: P	POL HAM	ERSON			SAM		ΧI	PRES TYPE	5.				/O			0	<u> </u>	4 8/	/ □24		,			RUSH 7 DAYS
LAB NO.	1	TIME		PLE IDENTI		 I	COMP.	GRAB	MATRIX	PARAMETERS			c. 23						NUMBER	/ځ.	ESUL1	rs due	DATE			
	8/284	1700	A962-6	w.mw	7			Var.	GNI		0	y	1	Ī	1	<u>(</u>	ୀ		7	<u>K</u> .e	21:			L) A		
	SIMPR	1045	1902-GW	·mrob					Çu			à	2	1	}	1			j			•				
	812998	1230	A\$02-60	U-MWP	3			V.	<u>(,</u>		j.	5 /3/	2	1	}	man je je ma	1		91							
	sum	1530	A902-	www m	NO2			V	GM	1	5	2	2.	j	-	1										
	81299	1625	A902-6	.U - m1 U.	04			<i></i>	٥Ł			2	2	}	j.	U	0		***		٠.					
	8/2919	31725	A902-1	6W-m	100 H			/	(h. i	1	0	2	2	1		0	0									
	State	1170	1907-G1	mil	800			V.	(J.)	1	0	<u>~</u>	1	1	. 1		0		7							
	Stor	4136	A102-6	wmw	01			$\sqrt{}$	$G(\mathcal{O})$	0	C)	2	7	· Anthe		C)	0		7							
	8/2/17) 	0102-6	M- Pu	?			1	(John)	1	Ç.	2	7.	0397	į	\circ	0		7							
	刘琳俊	1220	A902 - 6	1 Eq.				$\sqrt{}$	(راوس	\$	0	2	2	1	1	0	\mathcal{O}		7							
	SKU	Reside.	A902-	T. 2				-cmeser	TB									7440 V	į							
				TOTAL	. NUMB	ER OF (CONT	ΓΑΙΝ	IERS	Q	6	20,	20	0	0	3	3	and a	33						1	رث مي
EMPTY BOTTLES	RELINQUISH	ED BY (SI	GNATURE)	SEAL IN	TACT?	DATE:			EMP	TY BO	T) LES	RECE	IVEQ	BY (S	SIGN	ATUR	-)					TACT?		ATE:	120	173
RELINQUISHĘD B	Y (SIGNATU	RĘ)		SEAL IN	TACT?	DATES 17	49	\	1	EIVED	g	41							-			TACT?	The state of the s	ATE:		
- Year	44					TIME: / (D)	٥.		(4)											YES	NC		/A T			
relinguished b' 5	Y (SIGNATU	RE)		SEAL IN		DATE: TIME:			(6)	EIVED	BY (S	IGNA	IURE)							SE YES	AL IN	TACT?	, I-	ATE: IME:		
SPECIAL	INSTRU	CTION	S:						LAB	ORA	TOR	ΥR	EM/	ARK	S:										:	
SAMPLE CONTAIN	ERS PRECLE	EANED BY:	□MANUFACT	JRER M	ETHOD O	F SHIPME	NT: _	1	1) <i>[</i>		/ 15 	÷ .		В	ILL	OF I	LAD	NG	NO.;	gos	789	314	\$}5!	<u> </u>	
WHITE-FULLY EXE	CUTED COP	Y	SAMPLING TE		AUF	R Sally	/				IVED SIGNA			ATOR'							~		Ño.		114	5
PINK-SAMPLERS'	COPY/OA C	OPY		PO	21110	AM				DATE	:					ξп	ME: _							4		

N/O 20180 /280%

APPENDIX I

GROUNDWATER SAMPLE LOG SHEETS

								Page_	<u>/</u> of <u>/</u>
[] Monitor [] Other V	Name: tic Well Data ring Well Data Well Type: mple Type:	NAS K 7586	ÉY ?			Sample C.O.C. Type of	Location: 5		MWOJ CHICA UERSON
SAMPI ING DAT	A								
Date: 3/30/	medical contraction and an interest of the contraction of the contract	Color	рН	s.c.	Temp.	Turbidity	DO	Salinity	Other
Time: 123		Visual	Standard		Degrees C	NTU	mg/l	%	NA.
Method:	() ()				2				
PURGE DATA:									
Date: 9\30\	1X -	Volume	pН	s.c.	Temp. (C)	Turbidity	DO	Salinity	Other
Method:	15. Rump.	Initial	5.96	1.03	30.7	14	1.10	104	
Monitor Reading (11 1 000 1	1	6.00	1.03	30.5	-10	1.14	.04	
Well Casing Dian		2	598	1.03	364	-10	1.10	,04	
C	Tieter & Material	3	5.18	1,03	30-4	-10	1.12	-ai	
Type: 1	0 67	3	2.10	1,00	30.7	10	1.72	 /	
Total Well Depth								<u> </u>	{ -
Static Water Leve			ļ		<u> </u>			 	
One Casing Volu									
Start Purge (hrs):				ļ	ļ		ļ		
End Purge (hrs):	1230								
Total Purge Time	(min): 50								
Total Vol. Purged	(gal/L): 5.0								
SAMPLE COLLE	CTION INFORMA	TION:							
	Analysis		Preser	vative			equirements		Collected
FL PRO			Hel		1 liter				1
504.1		- <u></u>	HCL		40 ml				2
	8021		Hel		40 mil				2
8310			Non		1 lites		<u>6(a)</u>		
lead		···	HNC	3	1/13 ~~	C (ID)			 '
					<u> </u>				† · · · · · · · · · · · · · · · · · · ·
				······································	†				
		nanconaista de la constante de		nonggaption and the later		anang kang kananan	engagagagagagagagagagagagagagagagagagaga		
OBSERVATION									
*VOC	5- GRAVIT	y FET	₹().						
1 ' ' ' '	<u> </u>	ι						•	
1	·								
Circle If Applica	ible:					Signature(s):		
MS/MSD	Duplicate ID No.:						O(1)	\wedge	
1	nam	0-1.5	N 10			11	ノルく	J.	_

								Page	
Project Site Project No.	e Name: :	<u>NAS</u> 75	KEV 86	WES	<i>51</i>		e ID No.: Location: ed By:	A907	COW-MINO CA CHICA
∰Monito [] Other	stic Well Data oring Well Data Well Type: ample Type:					C.O.C. Type of —∏⊸ov			
SAMPLING DAT	īA.								
Date: 8/29/	abbanio, interessario della mesta conservamenti	Color	рН	s.c.	Temp.	Turbidity	ро	Salinity	Other
Time:	VC	Visual	Standard	!	Degrees C	NTU	mg/l	%	NA NA
Method: PERI	s. pemp								
PURGE DATA:	Control of the Contro								.
Date: 8/29/	98	Volume	рН	s.c.	Temp. (C)	Turbidity	DO	Salinity	Other
Method: VER	S. Kimp.	Initial	5.85	.96	29.9	18	1.73	-04	
Monitor Reading	(ppm):	1	5.85	.97	29.9	13	1.74	,09	
Well Casing Diar	meter & Material	2	5.82	.97	29.7	-7	1.80	104	·
Type: WC	<i>)''</i>	3	5.83	.98	29.9	-10	1.95	164	
	(TD): 12,00	\$	< 38	.98	29.9	-111	1.9/	64	
Static Water Lev			۷٠٠٠	- ()	2 ()		13/6		
	me(gal/L): j.45		<u></u>						
Start Purge (hrs)					<u></u>				
End Purge (hrs):									ii
Total Purge Time	2.70							***************************************	
	(gal/L): 5, 2			,					
	ECTION INFORMAT	ION:					<u> </u>		<u> </u>
	Analysis		Preser\		**********************	Container R	describite este confidência de la confidência del confidência de la confidência de l		Collected
FL PI			Hel		1 lite		Glass		1
504.1			Hel		40 m		r Glass		2
8021			HCl		40 m		er Glass		2
8310			Non		1 14		er Glass		
Lead			HNO	≯	125 A	L HDP) 	 	
							·····		
								······································	
OBSERVATION:			and the second s						
10C-1	GRAVITY	FEER) s						
		•							
					4				
						70:			
	ble:					Signature(s); ()	\bigcirc	
MS/MSD	Duplicate ID No.:					+-	4-		

Page (of /

4902-6W MW03 KEY WEST Sample ID No.: Project Site Name: Sample Location: Project No.: Sampled By: C.O.C. No.: 3145 [] Domestic Well Data Type of Sample: **►** Monitoring Well Data Low Concentration Other Well Type: [] High Concentration [] QA Sample Type: SAMPLING DATA: Date: 영고9 역 🔾 Other Color Нq S.C. **Turbidity** DO Salinity Temp. NTU mg/l NA Time: Visual Standard mS/cm Degrees C Method: PERISTALTIC FUM PURGE DATA; Date: 8/29/98 Volume Temp. (C) **Turbidity** DO Salinity Other Нa S.C. 1.54 ሏን 03 Method: PERISTACTIC PUMP Initial 5.18 -695 33,4 1.62 .07 1 Monitor Reading (ppm): 2 .02 Well Casing Diameter & Material 02 Type: PV C 2315 -10 3 Total Well Depth (TD): 1200 Static Water Level (WL): 2パリ One Casing Volume(gal/L): 1041 Start Purge (hrs): End Purge (hrs): Total Purge Time (min): 5.0 Total Vol. Purged (gal/L): SAMPLE COLLECTION INFORMATION: Preservative **Container Requirements** Collected Analysis liter Amber Glass FL PRO HER 40 ml clear Glass 2 504.1 Hel 40 ml clear Glass 2 HCl 8021 8310 None Amber Glass 1 liter HNOZ Lead OBSERVATIONS / NOTES: XVOC-GRAVITY FEED Circle if Applicable: MS/MSD **Duplicate ID No.:**

Page__/_ of _/_

Project Site Name: Project No.: [] Domestic Well Data [] Monitoring Well Data [] Other Well Type: [] QA Sample Type:			KEY WEST				1	
				. – .				
Color	ъH	sc	Temn	Turhidity	DΩ	Salinity	Other	
i			-				NA NA	
7 1300	Builder	III TO	Deg. cas C					
hod:								
Volume	рН	s.c.	Temp. (C)	Turbidity	DO	Salinity	Other	
Initial	5.62		30.3	17	,92	103		
1	5.59		29.9	-10	,93	.00		
2		1548		40	. 93	100		
				-10	19X	102		
<u> </u>	3 700	, , ,	2 ()	, , ,				
I ION:								
	Preser	vative		Container R	equirements		Collected	
			1: life				1	
	Hel	1					2	
	HEL		40 n				2	
	HNO	3	125 m	we HBP				
						<u></u>		
	 							
						, , , , ,		
1 7-15								
eren en e			. ••					
				Signature(s): A			
Circle if Applicable: MS/MSD Duplicate ID No.:								
	Initial 1 2 3 TION:	Volume pH Initial 5.67 1 5.59 2 5.65 3 5.67 TION: Preser Hell Hell Hell Hell Hell Hell Hell He	Volume pH s.c. Initial 5.67, 556 1 5.89, 549 2 5.66, 549 3 6.62, 547 TION: Preservative Hel Hel Hore HN03	Visual Standard mS/cm Degrees C	Color pH S.C. Temp. Turbidity Visual Standard mS/cm Degrees C NTU Volume pH S.C. Temp. (C) Turbidity Initial 5.62 , S.S. 30.3 17 1 5.59 , S.49 39.9 -10 3 (.62 .542 29.9 -)0 TION: Preservative Container R Hell 40 nul CG Hell 40 nul CG Hene 1 (Ger AG HN03 (25 nul HbP)	High Concentr Color pH S.C. Temp. Turbidity DO Visual Standard mS/cm Degrees C NTU mg/l Volume pH S.C. Temp. (C) Turbidity DO Initial S.62 S.56 30.3 17 92 1 S.59 S49 19.9 10 93 2 S.66 S47 29.8 -10 98 3 (62 S47 29.8 -10 98 3 (62 S47 29.8 -10 98 4 TION: Preservative Container Requirements Hel	Visual Standard mS/cm Degrees C NTU mg/l %	

Page L of __(

1902-6W-MW Sample ID No.: Project Site Name: Sample Location: Project No.: Sampled By: [] Domestic Well Data C.O.C. No.: Monitoring Well Data Type of Sample: Low Concentration [] Other Well Type: High Concentration [] QA Sample Type: SAMPLING DATA: Date: 3/29/198 Turbidity DO Salinity Color рΗ s.c. Temp. Other NTU Time: Visual Standard mS/cm Degrees C mg/l NA Method: PERISTRUTU PUMP -10 CLEAR PURGE DATA: Date: 8 29198 Temp. (C) Turbidity Salinity Volume pН S.C. Other 35.0 Method: 30 0^{2} Initial 34.9 5.63 22 V172 1 Monitor Reading (ppm): 74.9 Well Casing Diameter & Material 2 20 91 -10 3 Total Well Depth (TD): 12 . D い Static Water Level (WL): 2.52 One Casing Volume(gal/L): Start Purge (hrs): 1410 End Purge (hrs): Total Purge Time (min): 60 Total Vol. Purged (gal/L): 5.0 SAMPLE COLLECTION INFORMATION: Container Requirements Collected **Preservative Analysis** FL PRO Hel liter AG HC 4 504-1 4ce CG 8021 8310 None A-G-HNO3 Lead OBSERVATIONS / NOTES: VOC-GRANTY FOED Circle if Applicable: Signature(s): MS/MSD **Duplicate ID No.:**

Page____ of ____

Project Site Name: Project No.: [] Domestic Well Data Monitoring Well Data [] Other Well Type: [] QA Sample Type:	MAS K 1880	EY W	ey west			Sample ID No.: Sample Location: Sampled By: C.O.C. No.: Type of Sample: Low Concentration High Concentration		
SAMPLING DATA:								
Date: 8/29/9X	Color	рН	s.c.	Temp.	Turbidity	DO	Salinity	Other
Time:	Visual	Standard	mS/cm	Degrees C	NTU	mg/l	%	NA
Method:	Visual Stan							
PURGE DATA:								
Date: 8 29 98	Volume	pН	s.c.	Temp. (C)	Turbidity	DO	Salinity	Other
Method: DERISTAGLE:	Initial	5177	-727	2916	112	1.23	,04	
Monitor Reading (ppm):	1	5.80	,729	29.5	3)	1.78	.03	
Well Casing Djameter & Material	2	8.89	-122	27.8	7	1.80	+03	
Type: PV C J'	3	5.91	.121	29.7	-3	1.66	-03	
Total Well Depth (TD): 1と. 0 ひ		591	.70	29.9	-1	1.85	.03	,
Static Water Level (WL): 2.1 4		, ,						
One Casing Volume(gal/L): [.57								
Start Purge (hrs): 0930								
End Purge (hrs): 104								
Total Purge Time (min): 1								
Total Vol. Purged (gal/L): 5D								
SAMPLE COLLECTION INFORMA	TION:							F
Analysis		Preser	vative			equirements		Collected
FL PRO		Hel			ther A			
504-1		Hel		40 v	A .			2
802/		Hel		40 4				2
8310 Lead		Non		125		90	***************************************	
<u> </u>	 	AIN		120	<u> </u>			
		<u> </u>						
		1						
OBSERVATIONS / NOTES:								
VOL- GRAVITY FEED)							
Circle if Applicable:					Signoture!	* 0		
MS/MSD Duplicate ID No.:					4 000	141		!
1					1			

Page_

	ic Well Data ing Well Data Vell Type:	NAS Y	NAS KEY WEST		Sample ID No.: A 702 Sample Location: Bock Sampled By: A 702 C.O.C. No.: 3 64 Type of Sample: The Low Concentration [] High Concentration			-GW-MWDOS A CHICA 45	
SAMPLING DATA	7								
Date: 8 30 9	A BOTH DATE OF THE PARTY OF THE	Color	pН	s.c.	Temp.	Turbidity	DO	Salinity	Other
Time: (\20		Visual	Standard	mS/cm	Degrees C	NTU	mg/l	%	NA NA
Method: PECIS,	Ump,	CLEAR							
PURGE DATA:									
Date: 8 30 98		Volume	рН	s.c.	Temp. (C)	Turbidity	DO	Salinity	Other
Method: PER15	. Rump	Initial	6.83	48.0	27.6	34	1.36	3.13	
Monitor Reading (p		1	6.57	48.1	28.0	-10	1.40	3.15	
Well Casing Diam	eter & Material	2	6.60	49.0	28.1	-10	1.45	3112	
Type: Z リ	\mathcal{A}	3	6.59	48.1	28.0	-10	1.46	3.14	
Total Well Depth (TD): 35.60								
Static Water Level	(WL): 2.89						<u> </u>		
One Casing Volun	ne(gal/L): 5.13								
Start Purge (hrs):	0930								
End Purge (hrs):	1120		<u> </u>			<u> </u>			
Total Purge Time	(min): ()								
Total Vol. Purged				<u> </u>					
Contract the second contract of the second co	CTION INFORMA	TION:				und the sea of the sea			
	Analysis		Preser		14		equirements		Collected
FL P. 504.1	<u>ko</u>		HE		1 lit				1 2
8021			He		40				2
8310	· .			ne.		ter AG			7
Leas			HN	03	125	ml H	٥ <u>۸</u>		1
		Sk 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	 		<u> </u>				1
	***	<u> </u>	 -		 				
			†						
		1903 00 00 00 00 00 00 00 00 00 00 00 00 0	100000000000000000000000000000000000000						
OBSERVATIONS			research de participation de la company						
VOC-	GRAVITY	FEFI	0						ļ
•		•	j to spill						
					Serve :				
{									
1									
1									
Circle If Annlica	bles					Signature	(s):		
65,000,000,000,000	ble: Duplicate ID No.					Signature	(s): _1^ \		
Circle If Applica MS/MSD	Duplicate ID No.					Signature	(s):		

Petroleum or Petroleum Products Water Sampling Log

FDEP FACILITY NO.: WELL NO.: SAMPLE ID: MWDI DATE: 12/02/98
SITE NAME: A902 TRUK FILL STAND SITE LOCATION: NAS KEYWEST BORA CHICA

					PURGE DA	TA		
WELL DIAMETE	R (in):	2	TOTAL W		46	HTO ER (A): 3.41	WELL CAPACITY (go	vn): 0.16
I WELL VO	OLUME (gal	ATOT) - (L WELL DEF	TH - DEP	TH TO WATER) 1 W	ELL CAPACITY -		
		- (11.90	-	3.या) :	0.16	1.35	
PURGE METHOD:	PERIST	MITIC /	QUIESCE	NT	PURGING INITIATED AT:	1520	PURGING ENDED AT:	48
WELL	CUMUL. VOLUME				PURGE RATE (gpm):	0.25	TOTAL VOLUME PURGED (gal):	
VOLS. PURGED	PURGED (gal)	эĦ	TEMP.	COND. (µmhoe)	COLOR	ODOR	APPEARANCE	OTHER
1	1.35	6.9	29.1	1245	clear	none	clear	
2	2.70	6.9	29.2	1237	lı.	£¢ .	h	
3	4.05	6,9	28.4	1194	n	11	Į.	,
. 4	5.40	6.9	29.1	1687	41	, te	c c	
5	6.75	6.9	28.9	1110	4)	(4	К	
			<u> </u>		 	 	1	

				SAMPLING DATA	^	A
	LED BY / RIGH	KO. / SKI	ov Ttnus	SAMPLER(S) SIGNATURE(S	5 luke	sanho.
SAMPI METH	10/4	RISTATIC	1BALLER	SAMPLING INITIATED A	1: 1220	BAMPLING ENDED AT: 1554
FI	ELD DECONTA	MINATION:	N	PIELD-FILTERED: Y	6	DUPLICATE: Y N
	SPECIFICATI		SAI	mple Preservation		intended analysis
NO.	MATERIAL CODE	VOLUME	PRESERVATIVE USED	TOTAL VOLUME ADDED IN FIELD (ml)	FINAL	AND/OR METHOD
2	CG	40ml	Hel	Are-Preserved	NA	8021B
1	AG	1ets	None	X	a	8310
1	HDP	125ml	HNOS	11	U	239.2
2	CG	40ml	Hel	ч	u	504
1	AG	1.etr	HCL	ę¢	К	FL-PRO
				J		.
REMA	RKS:					

NIATERIAL CODES: AG-AMBER GLASS; CG-CLEAR GLASS; HDP-HIGH DENSITY POLYETHYLENE; O-OTHER (BPECIFY)
WELL CAPACITY: 1.25"-0.06 gal/R; 2"-0.16 gal/R; 4"-0.65 gal/R; 6"-1.47 gal/R; 8"-2.61 gal/R; 12"-5.88 gal/R

NOTE: this does not constitute all the information required by Chapter 62-168, F.A.C.

Petroleum or Petroleum Products Water Sampling Log

FDEP FACILITY NO.: WELL NO.: SAMPLE ID: MW 22 DATE: 12 1 2 1 98

SITE NAME: A902 TRUCK FLLL STAND SITE LOCATION: NAS KEY WEST BOCA CHICA

					PURGE DA'	TA		
WELL DIAMETE	R (in):	2	TOTAL W		.95 DEPTI		WELL CAPACITY (g	elm): 5 46
WELL V	OLUME (gal)	LATOT) - (WELL DEF	TH - DEP	th to water) 1 wi	LL CAPACITY -		
		-(1.95	- :	2.02):	0.16	1.59	
PURGE METHOD:	PERISTA	UTIC/QUI	ESCENT		PURGING INITIATED AT:	1\$55	PURGING ENDED AT:	-30
WELL	CUMUL. VOLUME				PURGE RATE (gpm):	0.25	TOTAL VOLUME PURGED (24):	8
VOLS. PURGED	PURGED (gal)	pН	TEMP.	COND. (µmhos)	COLOR	ODOR	APPEARANCE	OTHER
1	1.59	6.9	27.2	1100	clear	none	clear	
2	3.18	6.9	27.3	1042	lt.	11	((
3	4.77	6.8	27.5	988	u .	u	t,	
4	6.36	6.8	222	792	ĸ	((ti	
5	7.95							
	•							
						1		

				SAMPLING DATA	0	
	LED BY / IATION PICK	0. /SKIPY.	- TENUS	SAMPLER(S) SIGNATURE(S	n liche	suh.
SAMP! METH	ung pek Od (s): Pek	ISTAUTIZ	BAILER	Sampling Initiated a	r: 1631 V	ENDED AT: 1634
FI	ELD DECONTA	MINATION:	(Y) N	Pield-filter ed : y (1	DUPLICATE: Y (N)
	SAMPLE CONT. SPECIFICATI		84	mple preservation		INTENDED ANALYSIS
NO.	MATERIAL CODE	VOLUME	PRESERVATIVE USED	TOTAL VOLUME ADDED IN FIELD (ml)	FINAL	AND/OR METHOD
2	CG	40 ml	Hcl	Are-Preserved	NA	8021 B
1	AG	1 Hr	none	N/A	N/A	8310
1	HDP	125 ml	HNO3	Pre-Preserved	4	239.2
2	cG	40 ml	HCL	11	. 11	504
1	AG	1 Hr	HCL	((u	FL PRO
		ļ				
REM	NRKS:		<u> </u>			
						Hylene; O-Other (Specify)
WELL	CAPACITY: 1.	.25" - 0.06 gal	R; 2" = 0.16 gal/R; 4	"= 0.65 gal/ft; 6" = 1.47 gal/ft;	5" - 2.61 gal/	R; 12" = 5.88 gal/R

NOTE: this does not constitute all the information required by Chapter 62-160, F.A.C.

Petroleum or Petroleum Products Water Sampling Log

A902-

					···			102-		
	ACILITY			WELL	. NO.:	SAMPLE	ID: M	WO7 DATE	:12/2/98	
SITE NA	AME: A	io2 teuc	KFILLS	TAND	SITE LO	CATION: I	VAS KE	Y WEST BUZA	CHICA	
					PURGE I	ATA				
WELL		<u>).</u>	TOTAL W		ar DE	PTH TO	2 ~	WELL	A 14	
DIAMETE	R (in):	<i>-</i>	DEPTH (N)	<u>. 11.</u>	95 W	ATER (N):	3.05	CAPACITY (relya): 0.16	
I WELL V	OLUME (gal) - (TOTAL	WELL DEP	TH - DEP	TH TO WATER) 1	WELL CAPAC	TTY -			
1										
	···	- (11.95			0.16	•	mr-		
PURGE	Tokomo 177									
MEINOB	CUMUL	T T			INITIATED AT:			ENDED AT:		
WELL	VOLUME]			RATE (gpm):	0.25		PURGED (sel):	7.1 gal	
VOLS	PURGED		TEMP.	COND.	COLOR	OI	OOR	APPEARANCE	OTHER	
PURGED	(gal)	PH ⊢	<u></u>	(µmhos)					O'HEX	
	1.42	7.4	28.2	1550	Clear	no	<u>ne</u>	Clear		
2	2.84	7.4	28.2	1560	11		.1	11		
3	4.26	7.5	27.8	1562	- 11	,	17	11		
.4	5.68	7.5	27.7	1576	11	1	1	11		
5	7.10	7.5	27.7	1565	ú	1	•	11		
	·					1				
			•							
					<i></i>					
				/	SAMPLING		//			
SAMPLED AFFILIAT	n i.	KO. /SKI	pv 7	tNUS		AMPLER(S) IGNATURE(S)	110	Uswar		
SAMPLIN	G 0	ERISTANT	1/ 1/2 A	1100-	S	AMPLING	1716	SAMPLING	1720	
METHOD	DECONTAI		(Y) N			NITIATED AT:		ENDED AT:		
	PLE CONT		12 F		FIELD-FILTER			DUPLICATI	L Y N	
	ECIFICATION		1.	84	mple preserva	TION		INTENDED	ANAL VEIS	
NO. M	ATERIAL	VOLUME		VATIVE	TOTAL VO	LUME	FINAL	AND/OR N		
2	CODE	Home		ED	ADDED IN F		PH .	05		
	ÇG	1 Utr	140		Pre-Preserv	ed	N/A	8021B		
_{	AG	125 ml		ne			81	8310		
	PLASTIC			103	· · ·		4	239.2		
2	4	40 ml		<u>u</u>	łs .		£¢.	504		
	A6	100	 !*	0	и		ĸ	FL-PRO		
			<u> </u>				LI		·	
REMARK										
MATERIA	L CODES:	ag – ambei	CLASS:	CC - CLZAI	R GLASS; HDP -	HIGH DENSIT	Y POLYET	HYLENE; O-OTHE	r (specify)	
WELLCA					- 0.65 gal/R; 6" -		- 141 (4	R; 12" = 5.86 gal/R		

NOTE: this does not constitute all the information required by Chapter 62-164, F.A.C.

APPENDIX J

ANALYTICAL REPORTS FOR SOIL PRE-DISPOSAL CHARACTERIZATION

PC&B Environmental Laboratories, Inc.

210 Park Road, Oviedo, Florida 32765 Phone: 407-359-7194 Fax: 407-359-7197

09-16-1998

Paul Calligan
Tetra Tech NUS, Inc.
1311 Executive Center Drive, Ste. 220
Tallahassee, FL 32301-

Dear Paul Calligan:

Enclosed are the results of the analysis of your samples received 08/28/1998.

Our laboratory is certified by the Florida DHRS (Lab #E83239) and operates under an FDEP approved Comprehensive Quality Assurance Plan (#900134G). Unless otherwise noted, all results are reported as received. All data were determined in accordance with published procedures (EPA-600/4-79-020), Methods for Chemical Analysis of Water and Wastes, Revised March 1983 and/or Standard Methods for the examination of Water and Wastewater, 18th Edition 1989 and/or Test Methods for Evaluating Solid Waste (EPA-SW-846, Revised January 1995), unless stated otherwise in our CompQapp under method modifications.

If you have any questions, please do not hesitate to give me a call.

Sincerely,

Andrew Harrison Laboratory Manager

PC&B Environmental Laboratories, Inc.

210 Park Road, Oviedo, Florida 32765 Fax: 407-359-7197 Phone: 407-359-7194

Client:

Tetra Tech NUS, Inc.

1311 Executive Center Drive, Ste. 220

Tallahassee, FL 32301-

Contact: Paul Calligan

Phone:

(850) 656-5458

Laboratory Reference Number: 98080207

Project Name: NAS Key West Truck Fill Stand

Project Number: 7586

Sample temperature at time of receipt: 4 degrees C

Chain of Custody: 3146

Laboratory ID	Matrix	Client ID	Sta	atus	Date/Time Sa	ampled
98080207-1	Soil	A902-PREBURN	RU	JN	08/27/1998	16:00

Number	Parameter	Description	
1	Group Test	RCRA Metals by ICAP in Soil	
1	FL-PRO	Petroleum Hydrocarbons	
. 1	EPA 8100	Polynuclear Aromatic Hydrocarbons	
1	EPA 8021	Volatile Organics	
1	EPA 5050/9252	Total Halogens	

Case Narrative

Paul Calligan Tetra Tech NUS, Inc. 1311 Executive Center Drive, Ste. 220 Tallahassee, FL 32301-

CASE NARRATIVE for Work Order: 98080207

Project Number: 7586

Project Name: NAS Key West Truck Fill Stand

This Case Narrative is a summary of events and/or problems encountered with this Work Order.

For sample requesting EPA 8021 analysis, The GCMS method EPA 8260 was substituted in order to generate the highest quality data at no additional cost.

Analysis of EPA 8100 was performed in place of EPA 8310 due to soil matrix.

Definition of Flags

- No surrogate result due to dilution or matrix interference. Estimated Value, value not accurate. DL
- - Off-scale high. Actual value is greater than value given.
- Value reported is less than the laboratory method detection limit.
- Analyte was detected in the blank and sample.

QC Batch Summary

Paul Calligan
Tetra Tech NUS, Inc.
1311 Executive Center Drive, Ste. 220
Tallahassee, FL 32301-

QC BATCH SUMMARY for Work Order: 98080207

Project Number: 7586

Project Name: NAS Key West Truck Fill Stand

Method	SubNum	QC Batch			
EPA 6010 - Arsenic by ICAP					
	-1	9808RC111			
EPA 6010 - Barium by ICAP					
	-1	9808RC111			
EPA 6010 - Cadmium by ICAP					
	-1	9808RC111			
EPA 6010 - Chromium by ICAP					
	-1	9808RC111			
EPA 6010 - Lead by ICAP					
•	-1	9808RC111			
EPA 7471 - Mercury (Total) by C					
	-1	9808HG094			
FL-PRO - Petroleum Hydrocarb					
	-1 	9809FLRO005			
EPA 8100 - Polynuclear Aromatic Hydrocarbons					
	-1	9809PAH006			
EPA 6010 - Selenium by ICAP		000000444			
	-1	9808RC111			
EPA 6010 - Silver by ICAP	4	020000444			
EDA FOROMORO Total listo com	-1	9808RC111			
EPA 5050/9252 - Total Halogens		9808TX103			
FDA 9024 Volatila Organica	-1	90001V102			
EPA 8021 - Volatile Organics	-1	9809MS1007			
	- 1	2002INI 21001			

PC&B Environmental Laboratories, Inc.

210 Park Road Oviedo, FL 32765 PHONE: 407-359-7194 FAX: 359-7197 Volatile Organics

CLIENT NAME: Tetra Tech NUS, Inc. PROJECT NAME: NAS Key West Truck Fill Stand PROJECT NUMBER: 7586 DATE RECEIVED: 08/28/1998 ANALYTICAL PROTOCOL: EPA 5035/8021

Lab Reference Number:
Client Sample ID:
Date Sampled:
Date Extracted:
Date Analyzed:
Percent Moisture
Sample Matrix (as Received):
Analysis Confirmed:

98080207-1 A902-PREBURN 08/27/1998 08/28/1998 09/03/1998 19.4 Soil

Ana Dilu

GCMS

nalysis Confirmed :	G
lution Factor :	1

MDL	Analyte	Results/Flag	Units	Analyst
5	Benzene	6 U	ug/kg	NM
5	Bromobenzene	6 U	ug/kg	NM
5	Bromochloromethane	6 U	ug/kg	NM
5	Bromodichloromethane	6 U	ug/kg	NM
5	Bromoform	6 U	ug/kg	NM
5	Bromomethane	6 U	ug/kg	NM
5	n-Butylbenzene	6 U	ug/kg	NM
5	sec-Butylbenzene	6 U	ug/kg	NM
5	tert-Butylbenzene	6 Ŭ	ug/kg	NM
5	Carbon tetrachloride	6 U	ug/kg	NM
5	Chlorobenzene	6 Ü	ug/kg	NM
5	Chloroethane	6 Ü	ug/kg	NM
5	Chloroform	6 U	ug/kg	NM
5	Chloromethane	6 U	ug/kg	NM
5	2-Chlorotoluene	6 U	ug/kg	NM
5	4-Chlorotoluene	6 U		
5	Dibromochloromethane	6 U	ug/kg	NM NA
			ug/kg	NM
5	1,2-Dibromoethane	6 U 6 U	ug/kg	NM
5	Dibromomethane		ug/kg	NM
5	1,2-Dichlorobenzene	6 U	ug/kg	NM
5	1,3-Dichlorobenzene	6 U	ug/kg	NM
5	1,4-Dichlorobenzene	6 U	ug/kg	NM
5	Dichlorodifluoromethane	6 U	ug/kg	NM
5	1,1-Dichloroethane	6 U	ug/kg	NM
5	1,2-Dichloroethane	6 U	ug/kg	NM
5	1,1-Dichloroethene	e u	ug/kg	NM
5	cis-1,2-Dichloroethene	6 U	ug/kg	NM
5	trans-1,2-Dichloroethene	6 U	ug/kg	NM
5	1,2-Dichloropropane	6 U	ug/kg	NM
_. 5	1,3-Dichloropropane	6 U	ug/kg	NM
5	2,2-Dichloropropane	6 U	ug/kg	N M
5	1,1-Dichloropropene	6 U	ug/kg	NM
5	Ethylbenzene	6 U	ug/kg	NM
5	Hexachlorobutadiene	6 U	ug/kg	NM
5	Isopropylbenzene	6 U	ug/kg	NM
5	p-Isopropyttoluene	6 U	ug/kg	NM
5	Methylene chloride	29 V	ug/kg	NM
5	Naphthalene	6 U	ug/kg	NM
5	n-Propylbenzene	6 U	ug/kg	NM
5	Styrene	6 U	ug/kg	NM
5	1,1,2-Tetrachloroethane	6 Ü	ug/kg	NM
5	1,1,2,2-Tetrachloroethane	6 U	ug/kg	NM
5	Tetrachloroethene	6 U	ug/kg	NM
5	Toluene	6 U	ug/kg	NM
5	1,2,3-Trichlorobenzene	6 U	ug/kg	NM
5	1,2,4-Trichlorobenzene	6 U	ug/kg	NM
5	1,1,1-Trichloroethane	6 U	ug/kg ug/kg	NM
5	1,1,2-Trichloroethane	6 U		
5	Trichloroethene	6 U	ug/kg	NM.
			ug/kg	NM
5 5	Trichlorofluoromethane	6 U	ug/kg	NM
2	1,2,3-Trichloropropane	6 U	ug/kg	NM
5	1,2,4-Trimethylbenzene	14	ug/kg	NM
5	1,3,5-Trimethylbenzene	6 U	ug/kg	NM

PC&B Environmental Laboratories, Inc. Volatile Organics

210 Park Road Oviedo, FL 32765 PHONE: 407-359-7194 CLIENT NAME: Tetra Tech NUS, Inc. PROJECT NAME: NAS Key West Truck Fill Stand PROJECT NUMBER: 7586 DATE RECEIVED: 08/28/1998 ANALYTICAL PROTOCOL: EPA 5035/8021

FAX: 359-7197

Lab Reference Number : Client Sample ID: Date Sampled: Date Extracted: Date Analyzed: Percent Moisture

98080207-1 A902-PREBURN 08/27/1998 08/28/1998 09/03/1998 19.4 Soil GCMS

Sample Matrix (as Received): Analysis Confirmed :

Dilution Factor:

	MDL Analyte	Results/Flag U	Inits Analyst
5 5 5 5	Vinyl chloride m&p-Xylenes o-Xylene MTBE (Surr) 1,2-Dichloroethane-d4 (%) (Surr) Toluene-d8 (%) (Surr) 4-Bromofluorobenzene (%)	6 U ug/kg 6 U ug/kg 6 U ug/kg 6 U ug/kg 94 % 100 % 128 %	NM NM NM NM NM NM

Quality Control Report for Method Blank

Volatile Organics

Matrix: Soil

Lab Sample ID: RB-09-03-98 QC Batch ID: 9809MS1007

Result Units: ug/kg

Analysis Date: 09/03/1998

Preparation Date: 09/03/1998

Method: EPA 8021

Analyst: NM

Benzene 5 U Bromobenzene 5 U Bromochloromethane 5 U Bromodichloromethane 5 U Bromoform 5 U Bromomethane 5 U n-Butylbenzene 5 U Sec-Butylbenzene 5 U tert-Butylbenzene 5 U Carbon tetrachloride 5 U Chlorobenzene 5 U Chlorotethane 5 U Chlorotoform 5 U Chloromethane 5 U 2-Chlorotoluene 5 U 4-Chlorotoluene 5 U 2-Chloromethane 5 U 1,2-Dibromoethane 5 U 1,3-Dichlorobenzene 5 U 1,4-Dichlorobenzene 5 U 1,2-Dichloroethane 5 U 1,1-Dichloroethane 5 U 1,2-Dichloroethane 5 U 1,3-Dichloropropane 5 U 2,2-Dichloropropane 5 U 1,3-Dic	Analyte	Result	Flag	Analyte	Result	Flag
Bromoform	Benzene	5	U	Bromobenzene	5	
n-Butylbenzene 5 U sec-Butylbenzene 5 U tert-Butylbenzene 5 U Carbon tetrachloride 5 U Chlorobenzene 5 U Chloroethane 5 U Chlorotoluene 5 U Chlorotoluene 5 U 2-Chlorotoluene 5 U 4-Chlorotoluene 5 U Dibromochloromethane 5 U 1,2-Dichlorobenzene 5 U Dibromomethane 5 U 1,2-Dichlorobenzene 5 U Dichlorodifluoromethane 5 U 1,2-Dichlorobenzene 5 U Dichlorodifluoromethane 5 U 1,1-Dichloroethane 5 U 1,2-Dichloroethane 5 U 1,1-Dichloroethane 5 U 1,2-Dichloroethane 5 U 1,1-Dichloroethane 5 U 2,2-Dichloroepopane 5 U 1,1-Dichloroptopane 5 U Ethylbenzene 5	Bromochloromethane	5	U	Bromodichloromethane	5	U
tert-Butylbenzene 5 U Carbon tetrachloride 5 U Chlorobenzene 5 U Chloroethane 5 U Chloroform 5 U Chloroethane 5 U 2-Chlorotoluene 5 U 4-Chlorotoluene 5 U Dibromochloromethane 5 U 1,2-Dibromoethane 5 U Dibromomethane 5 U 1,2-Dichlorobenzene 5 U Dibromomethane 5 U 1,2-Dichlorobenzene 5 U Dichlorodifluoromethane 5 U 1,4-Dichlorobenzene 5 U Dichlorodifluoromethane 5 U 1,1-Dichlorobenzene 5 U 1,2-Dichlorodethane 5 U 1,1-Dichloroethene 5 U 1,2-Dichloropropane 5 U 1,3-Dichloropropane 5 U 2,2-Dichloropropane 5 U 1,1-Dichloropropane 5 U Ethylbenzene 5	Bromoform	5	U	Bromomethane	5	U
Chlorobenzene 5 U Chloroethane 5 U Chloroform 5 U Chloromethane 5 U 2-Chlorotoluene 5 U 4-Chlorotoluene 5 U Dibromochloromethane 5 U 1,2-Dibromoethane 5 U Dibromomethane 5 U 1,2-Dichlorobenzene 5 U Dichlorodifluoromethane 5 U 1,4-Dichlorobenzene 5 U Dichlorodifluoromethane 5 U 1,1-Dichloroethane 5 U 1,2-Dichlorodifluoromethane 5 U 1,1-Dichloroethane 5 U 1,2-Dichlorodethane 5 U 1,3-Dichloropthane 5 U 1,2-Dichloropropane 5 U 1,3-Dichloroptopane 5 U 2,2-Dichloropropane 5 U 1,1-Dichloroptopane 5 U 2,2-Dichloropropane 5 U 1,1-Dichloroptopane 5 U 1,2-Pichloropropane	n-Butylbenzene	5	U	sec-Butylbenzene	5	U
Chloroform 5 U Chloromethane 5 U 2-Chlorotoluene 5 U 4-Chlorotoluene 5 U Dibromochloromethane 5 U 1,2-Dibromocethane 5 U Dibromomethane 5 U 1,2-Dichlorobenzene 5 U J.3-Dichlorobenzene 5 U 1,1-Dichlorobenzene 5 U Dichlorodifluoromethane 5 U 1,1-Dichloroethane 5 U 1,2-Dichloropethane 5 U 1,1-Dichloroethane 5 U 1,2-Dichloropropane 5 U 1,3-Dichloropropane 5 U 2,2-Dichloropropane 5 U 1,3-Dichloropropane 5 U 2,2-Dichloropropane 5 U 1,1-Dichloropropane 5 U 2,2-Dichloropropane 5 U 1,1-Dichloropropane 5 U 2,2-Dichloropropane 5 U 1,1-Dichloropropane 5 U 4,2-Dichloropropane </td <td>tert-Butylbenzene</td> <td>5</td> <td>U</td> <td>Carbon tetrachloride</td> <td>5</td> <td>U</td>	tert-Butylbenzene	5	U	Carbon tetrachloride	5	U
2-Chlorotoluene 5 U 4-Chlorotoluene 5 U Dibromochloromethane 5 U 1,2-Dibromoethane 5 U Dibromomethane 5 U 1,2-Dichlorobenzene 5 U 1,3-Dichlorobenzene 5 U 1,4-Dichlorobenzene 5 U Dichlorodifluoromethane 5 U 1,4-Dichlorobenzene 5 U Dichlorodifluoromethane 5 U 1,1-Dichlorobenzene 5 U 1,2-Dichloropethane 5 U 1,1-Dichloroethane 5 U 1,2-Dichloropethane 5 U 1,3-Dichloropethane 5 U 1,2-Dichloropropane 5 U 1,3-Dichloropropane 5 U 2,2-Dichloropropane 5 U 1,3-Dichloropropane 5 U 2,2-Dichloropropane 5 U 1,1-Dichloropropane 5 U 3,0-Propylbenzene 5 U 1,1-Dichloropropane 5 U 4,0-Pro	Chlorobenzene	5	U	Chloroethane	5	U
Dibromochloromethane 5 U 1,2-Dibromoethane 5 U Dibromomethane 5 U 1,2-Dichlorobenzene 5 U 1,3-Dichlorobenzene 5 U 1,4-Dichlorobenzene 5 U Dichlorodifluoromethane 5 U 1,1-Dichloroethane 5 U 1,2-Dichloroethane 5 U 1,1-Dichloroethane 5 U 1,2-Dichloroethene 5 U 1,1-Dichloroethene 5 U 1,2-Dichloropropane 5 U 1,3-Dichloroethene 5 U 1,2-Dichloropropane 5 U 1,3-Dichloropropane 5 U 2,2-Dichloropropane 5 U 1,1-Dichloropropane 5 U 3,5-Trichloropropane 5 U 1,1,2,2-Tetrachloropropane 5 U <t< td=""><td>Chloroform</td><td>5</td><td>U</td><td>Chloromethane</td><td>5</td><td>Ŭ</td></t<>	Chloroform	5	U	Chloromethane	5	Ŭ
Dibromomethane 5 U 1,2-Dichlorobenzene 5 U 1,3-Dichlorobenzene 5 U 1,4-Dichlorobenzene 5 U Dichlorodifluoromethane 5 U 1,1-Dichloroethane 5 U 1,2-Dichloroethane 5 U 1,1-Dichloroethane 5 U 1,2-Dichloroethane 5 U 1,1-Dichloroethane 5 U 1,2-Dichloropethane 5 U 1,3-Dichloropethane 5 U 1,2-Dichloropropane 5 U 1,3-Dichloropropane 5 U 2,2-Dichloropropane 5 U 1,1-Dichloropropane 5 U 3 U 1,1-Dichloropropane 5 U 1,1-Dichloropropane 5 U 4 U 1,2-Prophoropropane 5 U 1,1-Prophoropropane 5 U 1,1-Prophoropropane 5 U 1,1-Prophoropropane 5 U	2-Chlorotoluene	5	U	4-Chlorotoluene	5	υ
1,3-Dichlorobenzene 5 U 1,4-Dichlorobenzene 5 U Dichlorodifluoromethane 5 U 1,1-Dichloroethane 5 U 1,2-Dichloroethane 5 U 1,1-Dichloroethane 5 U cis-1,2-Dichloroethene 5 U trans-1,2-Dichloroethene 5 U 1,2-Dichloropropane 5 U trans-1,2-Dichloroethene 5 U 1,2-Dichloropropane 5 U 1,1-Dichloropropane 5 U 2,2-Dichloropropane 5 U 1,1-Dichloroptopane 5 U 2,2-Dichloropropane 5 U Hexachloroptopane 5 U 1,0-Dichloroptopane 5 U 1,1-Dichloroptopane 5 U 1,1,1-Trichloroptopane 5 U 1,1,2-Trichloroptopane 5 U 1,2,3-Trichloroptopane 5 U 1,2,4-Trimethylbenzene 5 U 1,3,5-Trimethylbenzene 5 U 1,2,4-Trimethylbenzene 5 U 1,3,5-Trimethylbenzene 5 U 0-Xylene <td< td=""><td>Dibromochloromethane</td><td>5</td><td>U</td><td>1,2-Dibromoethane</td><td>5</td><td>U</td></td<>	Dibromochloromethane	5	U	1,2-Dibromoethane	5	U
Dichlorodifluoromethane 5 U 1,1-Dichloroethane 5 U 1,2-Dichloroethane 5 U 1,1-Dichloroethene 5 U cis-1,2-Dichloroethene 5 U trans-1,2-Dichloroethene 5 U 1,2-Dichloropropane 5 U 1,3-Dichloropropane 5 U 2,2-Dichloropropane 5 U 1,1-Dichloropropane 5 U 2,2-Dichloropropane 5 U Hexachlorobutadiene 5 U Ethylbenzene 5 U Hexachlorobutadiene 5 U Isopropylbenzene 5 U P-Isopropylboutadiene 5 U Isopropylbenzene 5 U P-Isopropylboutadiene 5 U Isopropylbenzene 5 U P-Isopropylboutadiene 5 U Isopropylbenzene 5 U Styrene 5 U Interpolybenzene 5 U Styrene 5 U Interpolybenzene	Dibromomethane	5	U	1,2-Dichlorobenzene	5	U
Dichlorodifluoromethane 5 U 1,1-Dichloroethane 5 U 1,2-Dichloroethane 5 U 1,1-Dichloroethene 5 U cis-1,2-Dichloroethene 5 U trans-1,2-Dichloroethene 5 U 1,2-Dichloropropane 5 U 1,3-Dichloropropane 5 U 2,2-Dichloropropane 5 U 1,1-Dichloropropane 5 U 2,2-Dichloropropane 5 U Hexachlorobutadiene 5 U Ethylbenzene 5 U Hexachlorobutadiene 5 U Isopropylbenzene 5 U P-Isopropylboutadiene 5 U Isopropylbenzene 5 U P-Isopropylboutadiene 5 U Isopropylbenzene 5 U P-Isopropylboutadiene 5 U Isopropylbenzene 5 U Styrene 5 U Interpolybenzene 5 U Styrene 5 U Interpolybenzene	1,3-Dichlorobenzene	5	U	1,4-Dichlorobenzene	5	U
cis-1,2-Dichloroethene 5 U trans-1,2-Dichloroethene 5 U 1,2-Dichloropropane 5 U 1,3-Dichloropropane 5 U 2,2-Dichloropropane 5 U 1,1-Dichloropropene 5 U Ethylbenzene 5 U Hexachlorobutadiene 5 U Isopropylbenzene 5 U P-Isopropyltoluene 5 U Methylene chloride 15 Naphthalene 5 U n-Propylbenzene 5 U Styrene 5 U n-Propylbenzene 5 U 1,1,2,2-Tetrachloroethane 5 U n-Propylbenzene 5 U 1,2,4-Trichloroethane	Dichlorodifluoromethane	5	U		5	U
1,2-Dichloropropane 5 U 1,3-Dichloropropane 5 U 2,2-Dichloropropane 5 U 1,1-Dichloropropene 5 U Ethylbenzene 5 U Hexachlorobutadiene 5 U Isopropylbenzene 5 U D-Isopropyltoluene 5 U Methylene chloride 15 Naphthalene 5 U Naphthalene 5 U U 1,1,2,2-Tetrachloroethane 5 U 1,1,1,2-Tetrachloroethane 5 U 1,1,2,2-Tetrachloroethane 5 U 1,2,3-Trichlorobenzene 5 U 1,2,4-Trichlorobenzene 5 U 1,1,1-Trichloroethane 5 U 1,1,2-Trichloroethane 5 U 1,1,1-Trichloroethane 5 U 1,1,2-Trichloroethane 5 U 1,2,3-Trichloropropane 5 U 1,2,4-Trimethylbenzene 5 U 1,3,5-Trimethylbenzene 5 U Vinyl chloride 5 U 1,3,5-Trimethylbenzene 5 U Vinyl chloride 5 U </td <td>1,2-Dichloroethane</td> <td>5</td> <td>U</td> <td>1,1-Dichloroethene</td> <td>5</td> <td>U</td>	1,2-Dichloroethane	5	U	1,1-Dichloroethene	5	U
2,2-Dichloropropane 5 U 1,1-Dichloropropene 5 U Ethylbenzene 5 U Hexachlorobutadiene 5 U Isopropylbenzene 5 U p-Isopropyltoluene 5 U Methylene chloride 15 Naphthalene 5 U n-Propylbenzene 5 U Styrene 5 U 1,1,2-Tetrachloroethane 5 U 1,1,2-Tetrachloroethane 5 U Tetrachloroethene 5 U Toluene 5 U 1,2,3-Trichlorobenzene 5 U 1,2,4-Trichloroethane 5 U 1,1,1-Trichloroethane 5 U 1,1,2-Trichloroethane 5 U Trichloroethene 5 U Trichlorofluoromethane 5 U 1,2,3-Trichloropropane 5 U 1,2,4-Trimethylbenzene 5 U 1,3,5-Trimethylbenzene 5 U Vinyl chloride 5 U 1,3,5-Trimethylbenzene 5 U Vinyl chloride 5 U 1,2-Prichloroethane-d4	cis-1,2-Dichloroethene	5	U	trans-1,2-Dichloroethene	5	U
Ethylbenzene 5 U Hexachlorobutadiene 5 U Isopropylbenzene 5 U p-Isopropyltoluene 5 U Methylene chloride 15 Naphthalene 5 U n-Propylbenzene 5 U Styrene 5 U 1,1,2-Tetrachloroethane 5 U 1,1,2-Tetrachloroethane 5 U Tetrachloroethene 5 U Toluene 5 U 1,2,3-Trichlorobenzene 5 U 1,2,4-Trichloroethane 5 U 1,1,1-Trichloroethane 5 U 1,1,2-Trichloroethane 5 U 1,1,1-Trichloroethane 5 U 1,1,2-Trichloroethane 5 U Trichloroethene 5 U Trichlorofluoromethane 5 U 1,2,3-Trichloropropane 5 U 1,2,4-Trimethylbenzene 5 U 1,3,5-Trimethylbenzene 5 U Vinyl chloride 5 U 1,2-Trichloroethane 5<	1,2-Dichloropropane	5	U	1,3-Dichloropropane	5	U
Isopropylbenzene 5 U p-Isopropyltoluene 5 U Methylene chloride 15 Naphthalene 5 U n-Propylbenzene 5 U Styrene 5 U 1,1,2-Tetrachloroethane 5 U 1,1,2-Tetrachloroethane 5 U Tetrachloroethene 5 U Toluene 5 U 1,2,3-Trichlorobenzene 5 U 1,2,4-Trichloroethane 5 U Trichloroethane 5 U Trichlorofluoromethane 5 U 1,2,3-Trichloropropane 5 U 1,2,4-Trimethylbenzene 5 U 1,3,5-Trimethylbenzene 5 U Vinyl chloride 5 U m&p-Xylenes 5 U O-Xylene 5 U (Surr) Toluene-d8 (%) 104 104 104	2,2-Dichloropropane	5	U	1,1-Dichloropropene	5	U
Methylene chloride 15 Naphthalene 5 U n-Propylbenzene 5 U Styrene 5 U 1,1,1,2-Tetrachloroethane 5 U 1,1,2,2-Tetrachloroethane 5 U Tetrachloroethene 5 U Toluene 5 U 1,2,3-Trichlorobenzene 5 U 1,2,4-Trichloroethane 5 U 1,1,1-Trichloroethane 5 U 1,1,2-Trichloroethane 5 U Trichloroethene 5 U Trichlorofluoromethane 5 U 1,2,3-Trichloropropane 5 U 1,2,4-Trimethylbenzene 5 U 1,3,5-Trimethylbenzene 5 U Vinyl chloride 5 U m&p-Xylenes 5 U O-Xylene 5 U (Surr) Toluene-d8 (%) 104	Ethylbenzene	5	U	Hexachlorobutadiene	5	U
n-Propylbenzene 5 U Styrene 5 U 1,1,1,2-Tetrachloroethane 5 U 1,1,2,2-Tetrachloroethane 5 U Tetrachloroethene 5 U Toluene 5 U 1,2,3-Trichlorobenzene 5 U 1,2,4-Trichloroethane 5 U 1,1,1-Trichloroethane 5 U 1,1,2-Trichloroethane 5 U Trichloroethene 5 U Trichlorofluoromethane 5 U 1,2,3-Trichloropropane 5 U 1,2,4-Trimethylbenzene 5 U 1,3,5-Trimethylbenzene 5 U Vinyl chloride 5 U m&p-Xylenes 5 U o-Xylene 5 U (Surr) 1,2-Dichloroethane-d4 (%) 111 (Surr) Toluene-d8 (%) 104	Isopropylbenzene	5	υ	p-Isopropyltoluene	5	υ
1,1,1,2-Tetrachloroethane 5 U 1,1,2,2-Tetrachloroethane 5 U Tetrachloroethene 5 U Toluene 5 U 1,2,3-Trichlorobenzene 5 U 1,2,4-Trichlorobenzene 5 U 1,1,1-Trichloroethane 5 U 1,1,2-Trichloroethane 5 U Trichloroethene 5 U Trichlorofluoromethane 5 U 1,2,3-Trichloropropane 5 U 1,2,4-Trimethylbenzene 5 U 1,3,5-Trimethylbenzene 5 U Vinyl chloride 5 U m&p-Xylenes 5 U 0-Xylene 5 U (Surr) 1,2-Dichloroethane-d4 (%) 111 (Surr) Toluene-d8 (%) 104	Methylene chloride	15		Naphthalene	5	บ
Tetrachloroethene 5 U Toluene 5 U 1,2,3-Trichlorobenzene 5 U 1,2,4-Trichlorobenzene 5 U 1,1,1-Trichloroethane 5 U 1,1,2-Trichloroethane 5 U Trichlorofluoromethane 5 U Trichlorofluoromethane 5 U 1,2,3-Trichloropropane 5 U 1,2,4-Trimethylbenzene 5 U 1,3,5-Trimethylbenzene 5 U Vinyl chloride 5 U m&p-Xylenes 5 U o-Xylene 5 U (Surr) 1,2-Dichloroethane-d4 (%) 111 (Surr) Toluene-d8 (%) 104	n-Propylbenzene	5	U	Styrene	5	U
1,2,3-Trichlorobenzene 5 U 1,2,4-Trichlorobenzene 5 U 1,1,1-Trichloroethane 5 U 1,1,2-Trichloroethane 5 U Trichloroethene 5 U Trichlorofluoromethane 5 U 1,2,3-Trichloropropane 5 U 1,2,4-Trimethylbenzene 5 U 1,3,5-Trimethylbenzene 5 U Vinyl chloride 5 U m&p-Xylenes 5 U 0-Xylene 5 U (Surr) 1,2-Dichloroethane-d4 (%) 111 (Surr) Toluene-d8 (%) 104	1,1,1,2-Tetrachloroethane	5	U	1,1,2,2-Tetrachloroethane	5	U
1,1,1-Trichloroethane 5 U 1,1,2-Trichloroethane 5 U Trichloroethene 5 U Trichlorofluoromethane 5 U 1,2,3-Trichloropropane 5 U 1,2,4-Trimethylbenzene 5 U 1,3,5-Trimethylbenzene 5 U Vinyl chloride 5 U m&p-Xylenes 5 U 0-Xylene 5 U (Surr) 1,2-Dichloroethane-d4 (%) 111 (Surr) Toluene-d8 (%) 104	Tetrachloroethene	5	U	Toluene	5	U
Trichloroethene 5 U Trichlorofluoromethane 5 U 1,2,3-Trichloropropane 5 U 1,2,4-Trimethylbenzene 5 U 1,3,5-Trimethylbenzene 5 U Vinyl chloride 5 U m&p-Xylenes 5 U o-Xylene 5 U (Surr) 1,2-Dichloroethane-d4 (%) 111 (Surr) Toluene-d8 (%) 104	1,2,3-Trichlorobenzene	5	U	1,2,4-Trichlorobenzene	5	U
1,2,3-Trichloropropane 5 U 1,2,4-Trimethylbenzene 5 U 1,3,5-Trimethylbenzene 5 U Vinyl chloride 5 U m&p-Xylenes 5 U o-Xylene 5 U (Surr) 1,2-Dichloroethane-d4 (%) 111 (Surr) Toluene-d8 (%) 104	1,1,1-Trichloroethane	5	U	1,1,2-Trichloroethane	5	U
1,3,5-Trimethylbenzene 5 U Vinyl chloride 5 U m&p-Xylenes 5 U o-Xylene 5 U (Surr) 1,2-Dichloroethane-d4 (%) 111 (Surr) Toluene-d8 (%) 104	Trichloroethene	5	U	Trichlorofluoromethane	5	U
m&p-Xylenes 5 U o-Xylene 5 U (Surr) 1,2-Dichloroethane-d4 (%) 111 (Surr) Toluene-d8 (%) 104	1,2,3-Trichloropropane	5	U	1,2,4-Trimethylbenzene	5	U
m&p-Xylenes 5 U o-Xylene 5 U (Surr) 1,2-Dichloroethane-d4 (%) 111 (Surr) Toluene-d8 (%) 104	1,3,5-Trimethylbenzene	5	U	•	5	U
(Surr) 1,2-Dichloroethane-d4 (%) 111 (Surr) Toluene-d8 (%) 104	•	5	υ	•		υ
	• •	111		· · · · · · · · · · · · · · · · · · ·	104	
	(Surr) 4-Bromofluorobenzene (%)	118		, ,	5	U

Quality Control Report for LCS Analysis

Volatile Organics

Matrix: Soil

Lab Sample ID: LCS

QC Batch ID: 9809MS1007

LCS Units: ug/kg

Analysis Date: 09/03/1998

Preparation Date: 09/03/1998

Method: EPA 8021

Analyst: NM

Analyte	LCS Conc	LCS Result	Percent Recovery	Lower Control Limit	Upper Control Limit
Benzene	20	21	105	69	139
Carbon tetrachloride	20	18	90	64	134
Chlorobenzene	20	20	100	77	127
1.4-Dichlorobenzene	20	24	120	80	125
1,1-Dichloroethene	20	22	110	64	137
Ethylbenzene	20	19	95	66	128
Toluene	20	17	. 85	65	135
Trichloroethene	20	19	95	69	136

Quality Control Report for Spike/Spike Duplicate Analysis

Volatile Organics

Matrix: Soil

Lab Sample ID: 9809007-3 QC Batch ID: 9809MS1007

Spike Units: ug/kg

Analysis Date: 09/03/1998 Preparation Date: 09/03/1998

Method: EPA 8021

Analyst: NM

Analyte	Spike Amount	Sample Result	Spik e Result	Spike Percent Recovery	MSD Result	MSD Percent Recovery	RPD
Benzene	50	0	49	98	53	106	8
Carbon tetrachloride	50	0	57	114	51	102	11
Chlorobenzene	50	0	48	96	51	102	6
1,4-Dichlorobenzene	50	0	54	108	60	120	11
1,1-Dichloroethene	50	0	52	104	52	104	0
Ethylbenzene	50	0	49	98	49	98	ō
Toluene	50	0	42	84	45	90	7
Trichloroethene	50	0	53	106	52	104	2

Quality Control Limits

	Lower	Upper	
Analyte	Limit	Limit	RPD
Benzene	59	144	18
Carbon tetrachloride	49	148	15
Chlorobenzene	67	130	18
1,4-Dichlorobenzene	56	141	18
1,1-Dichloroethene	52	143	18
Ethylbenzene	42	157	19
Toluene	54	136	19
Trichloroethene	59	144	18

PC&B Environmental Laboratories, Inc.

210 Park Road Oviedo, FL 32765 PHONE: 407-359-7194 Polynuclear Aromatic Hydrocarb

CLIENT NAME: Tetra Tech NUS, Inc.

PROJECT NAME: NAS Key West Truck Fill Stand

PROJECT NUMBER: 7586 DATE RECEIVED: 08/28/1998

ANALYTICAL PROTOCOL: EPA 8100

FAX: 359-7197 Lab Reference Number:

Client Sample ID: Date Sampled: Date Extracted: Date Analyzed: Percent Moisture

Sample Matrix (as Received):

Analysis Confirmed: Dilution Factor :

98080207-1 A902-PREBURN 08/27/1998 09/01/1998 09/02/1998 19.4 Soil No

Results/Flag Units Analyst MDL <u>Analyte</u> ELA 125 U ug/kg Acenaphthene 100 125 U ug/kg ELA Acenaphthylene 100 ELA 100 Anthracene 125 U ug/kg ELA 125 U ug/kg Benzo(a)anthracene 100 100 Benzo(a)pyrene 125 U ug/kg **ELA ELA** 125 U ug/kg 100 Benzo(b)fluoranthene 125 U ug/kg ELA Benzo(ghi)perylene 100 Benzo(k)fluoranthene 125 υ ug/kg ELA 100 125 U ELA 100 Chrysene ug/kg Dibenzo(ah)anthracene 125 U ug/kg ELA 100 Fluoranthene 125 U ug/kg ELA 100 125 ELA 100 Fluorene U ug/kg 125 Indeno(123-cd)pyrene U ELA 100 ug/kg 125 U ug/kg ELA 100 Naphthalene 100 1-Methyl naphthalene 125 U ug/kg ELA 125 U ELA 100 2-Methyl naphthalene ug/kg ELA 125 U ug/kg Phenanthrene 100 100 Pyrene 125 U ug/kg ELA 57 ELA (Surr) 2-Fluorobiphenyl (%)

U = Undetected. The value preceeding the 'U' is the MDL for the analyte, based on dilution. Results reported on a Dry Weight basis. FDEP CompQAPP # 900134G - FHRS Certification # E83239/83353

Reviewed by:

Quality Control Report for Spike Analysis

Polynuclear Aromatic Hydrocarbons

Matrix: Soil

Lab Sample ID: 9808142-3

QC Batch ID: 9809PAH006

Spike Units: ug/kg

Analysis Date: 09/02/1998

Preparation Date: 09/01/1998

Method: EPA 8100

Analyst: ELA

Analyte	Spike Amount	Sample Result	Spik e Result	Percent Recovery	Lower Control Limit	Upper Control Limit
(Surr) 2-Fluorobiphenyl	100	0	80	80	45	101
Acenaphthene	50	0	54	108	46	125
Acenaphthylene	50	0	41	82	42	105
Anthracene	50	0	56	112	53	132
Benzo(a)anthracene	50	0	45	90	41	121
Benzo(a)pyrene	50	0	46	92	45	119
Benzo(b)fluoranthene	50	0	56	112	44	125
Benzo(ghi)perylene	50	0	44	88	37	120
Benzo(k)fluoranthene	50	0	45	90	44	126
Chrysene	50	0	45	90	48	117
Dibenzo(ah)anthracene	50	0	46	92	39	123
Fluoranthene	50	0	47	94	49	118
Fluorene	50	0	44	88	44	112
Indeno(123-cd)pyrene	50	0	46	92	36	124
Naphthalene	50	0	38	76	38	102
Phenanthrene	50	ō	44	88	45	118
Pyrene	50	Ō	47	94	49	120

Quality Control Report for Method Blank

Polynuclear Aromatic Hydrocarbons

Matrix: Soil

Lab Sample ID: RB-09-01-98

QC Batch ID: 9809PAH006

Result Units: ug/kg

Analysis Date: 09/02/1998 Preparation Date: 09/01/1998

Method: EPA 8100

Analyst: ELA

Analyte	Result	Flag	Analyte	Result	Flag
Acenaphthene	100	U	Acenaphthylene	100	U
Anthracene	100	U	Benzo(a)anthracene	100	IJ
Benzo(a)pyrene	100	U	Benzo(b)fluoranthene	100	U
Benzo(ghi)perylene	100	U	Benzo(k)fluoranthene	100	U
Chrysene	100	U	Dibenzo(ah)anthracene	100	U
Fluoranthene	100	U	Fluorene	100	Ų
Indeno(123-cd)pyrene	100	U	Naphthalene	100	U
1-Methyl naphthalene	100	U	2-Methyl naphthalene	100	υ
Phenanthrene	100	υ	Pyrene	100	U
(Surr) 2-Fluorobiphenyl (%)	73		•		

Quality Control Report for LCS/LCS Duplicate Analysis

Polynuclear Aromatic Hydrocarbons

Matrix: Soil

Lab Sample ID: LCS

QC Batch ID: 9809PAH006

LCS Units: ug/kg

Analysis Date: 09/02/1998

Preparation Date: 09/01/1998

Method: EPA 8100

Analyst: ELA

				LCS		LCSD	
	LC\$		LCS	Percent	LCSD	Percent	
Analyte	Conc		Result	Recovery	Result	Recovery	RPD
(Surr) 2-Fluorobiphenyl	100	0	78	78	77	77	1
Acenaphthene	50	0	50	100	51	102	2
Acenaphthylene	50	0	39	78	38	76	3
Anthracene	50	0	52	104	52	104	ō
Benzo(a)anthracene	50	0	40	80	41	82	2
Benzo(a)pyrene	50	0	43	86	43	86	ō
Benzo(b)fluoranthene	50	0	52	104	50	100	4
Benzo(ghi)perylene	50	0	41	82	41	82	0
Benzo(k)fluoranthene	50	0	43	86	43	86	Ö
Chrysene	50	0	42	84	43	86	2
Dibenzo(ah)anthracene	50	0	43	86	44	88	2
Fluoranthene	50	0	44	88	44	88	0
Fluorene	50	0	41	82	41	82	Ō
Indeno(123-cd)pyrene	50	0	42	84	42	84	Ö
Naphthalene	50	0	36	72	35	70	3
Phenanthrene	50	0	42	84	42	84	Ō
Pyrene	50	0	44	88	45	90	2

Quality	Control	Limits
---------	---------	--------

	Lower	Upper	
Analyte	Limit	Limit	RPD
SS_2-Fluorobiphenyl	51	100	11
Acenaphthene	62	125	11
Acenaphthylene	55	100	9
Anthracene	64	128	11
Benzo(a)anthracene	54	110	11
Benzo(a)pyrene	56	114	11
Benzo(b)fluoranthene	53	119	13
Benzo(ghi)perylene	50	112	13
Benzo(k)fluoranthene	53	119	13
Chrysene	53	114	12
Dibenzo(ah)anthracene	51	116	13
Fluoranthene	58	110	10
Fluorene	54	107	11
Indeno(123-cd)pyrene	51	115	13
Naphthalene	53	94	9
Phenanthrene	53	112	12
Pyrene	60	111	10

PC&B Environmental Laboratories, Inc.

210 Park Road Oviedo, FL 32765 PHONE: 407-359-7194 Petroleum Hydrocarbons

CLIENT NAME: Tetra Tech NUS, Inc.

PROJECT NAME: NAS Key West Truck Fill Stand PROJECT NUMBER: 7586

PROJECT NUMBER: 7586
DATE RECEIVED: 08/28/1998
ANALYTICAL PROTOCOL: FL-PRO

FAX: 359-7197

Lab Reference Number : Client Sample ID : Date Sampled : Date Extracted : Date Analyzed : Percent Moisture

Sample Matrix (as Received):

98080207-1 A902-PREBURN 08/27/1998 09/01/1998 09/02/1998

19.4 Soil No

Analysis Confirmed : Dilution Factor :

1

MDL Analyte
4.0 Total PHS
(Surr) C-39 (%)

 Results/Flag
 Units
 Analyst

 16.1
 mg/kg
 ELA

 80
 %
 ELA

U = Undetected. The value preceeding the 'U' is the MDL for the analyte, based on dilution. Results reported on a Dry Weight basis.

FDEP CompQAPP # 900134G - FHRS Certification # E83239/83353

Reviewed by :

Quality Control Report for Spike Analysis

Analyte		Spike Amount	Sample Result	Spike Result	Percent Recovery	Lower Control Limit	Upper Control Limit
Method: FL-PRO SS_C-39	QC Batch: 9809FLRO005	Sample ID: 9808142-2 100.0 mg/kg	Date Prep: 09/ 0.0	/01/1998 Da 90.0	ite Anal: 09/02/1998 90	Analyst: ELA 5	141
Method: FL-PRO Total PHS	QC Batch: 9809FLRO005	Sample ID: 9808142-2 5.0 mg/kg	Date Prep: 09/ 0.0	01/1998 Da 3.9	ite Anal: 09/02/1998 78	Analyst ELA 54	111

Quality Control Report for Method Blank

Analyte	Units Result Flag QC Batch ID	Anaiyst
	QC Batch: 9809FLRO005	Analyst: ELA ELA
,	QC Batch: 9809FLRO005 Sample ID: RB-09-01-98 Date Prep: 09/01/1998 Date Anal: 09/02/1998 78.0 9809FLRO005	Analyst: ELA ELA

Quality Control Report for LCS/LCS Duplicate Analysis

INORGANICS

Analyte		LCS Conc	LCS Percent Result Recovery	LCSD Result	Percent Recovery	RPD
Method: FL-PRO SS_C-39	QC Batch: 9809FLRO005	Sample ID: LCS 100.0 mg/kg	Date Prep: 09/01/1998 Date Anal: 09/02/1998 87.0 87	Analyst: El 91.0	A 91	4
Method: FL-PRO Total PHS	QC Batch: 9809FLRO005	Sample ID: LCS 5.0 mg/kg	Date Prep: 09/01/1998 Date Anal: 09/02/1998 4.2 84	Analyst: El 4.1	.A 82	2

Quality Control Limits

	Lower	Upper	
Analyte	Limit	Limit	RPD
SS_C-39	0	145	33
Total PHS	55	110	11

PC&B Environmental Laboratories, Inc.

Report of Analysis

CLIENT NAME: Tetra Tech NUS, inc.

PROJECT NAME: NAS Key West Truck Fill Stand PROJECT NUMBER: 7586 DATE RECEIVED: 08/28/1998

210 Park Road Oviedo, FL 32765 PHONE: 407-359-7194 Lab Reference Number :

98080207-1 A902-PREBURN

08/27/1998 19.4

Soil

Client Sample ID: Date Sampled: Percent Moisture

Sample Matrix (as Received):

Method	Parameter	Results/Flag	Units	Analyst	Date Prep	Date Anal	MDL
EPA 6010	Arsenic, Total	1.6	mg/kg	GG	08/28/1998	08/31/1998	0.5
EPA 6010	Barium, Total	5.2	mg/kg	GG	08/28/1998	08/31/1998	2.0
EPA 6010	Cadmium, Total	0.1 U	mg/kg	GG	08/28/1998	08/31/1998	0.1
EPA 6010	Chromium, Total	3.0	mg/kg	GG	08/28/1998	08/31/1998	0.1
EPA 6010	Lead, Total	2.7	mg/kg	GG	08/28/1998	08/31/1998	0.3
EPA 7471	Mercury, Total	0.1 U	mg/kg	SH	08/28/1998	08/28/1998	0.1
EPA 6010	Selenium, Total	0.6 U	mg/kg	GG	08/28/1998	08/31/1998	0.5
EPA 6010	Silver, Total	0.6 U	mg/kg	GG	08/28/1998	08/31/1998	0.5
EPA 5050/9252	Total Halogens	620 U	mg/kg	SH	08/28/1998	08/28/1998	500

U = Undetected. The value preceeding the 'U' is the MDL for the analyte. Results reported on a Dry Weight basis (where applicable).

FDEP CompQAPP # 900134G - FHRS Certification # E83239/83353

Reviewed by : ___

Quality Control Report for Method Blank

Analyte	Units	Result Flag QC Batch ID	Analyst
Method: EPA 6010A QC Batch: 9 Arsenic, Total	808RC111 Sample ID: R mg/kg		
Method: EPA 6010A QC Batch: 9 Barium, Total	808RC111 Sample ID: R mg/kg	B-08-28-98 Date Prep: 08/28/1998 Date Anal: 08/31/19 2.0 U 9808RC111	98 Analyst: GG GG
Method: EPA 6010A QC Batch: 9 Cadmium, Total	808RC111 Sample ID: Ri mg/kg	B-08-28-98 Date Prep: 08/28/1998 Date Anal: 08/31/19 0.1 U 9808RC111	
Method: EPA 6010A QC Batch: 9 Chromium, Total	808RC111 Sample ID: RI mg/kg	B-08-28-98 Date Prep: 08/28/1998 Date Anal; 08/31/199 0.1 U 9808RC111	-
Method: EPA 6010A QC Batch: 9 Lead, Total	808RC111 Sample ID: RI mg/kg		
Method: EPA 6010A QC Batch: 9 Selenium, Total	808RC111 Sample ID: RI		
Method: EPA 6010A QC Batch: 9 Silver, Total	808RC111 Sample ID: Ri mg/kg	B-08-28-98 Date Prep: 08/28/1998 Date Anal: 08/31/199 0.5 U 9808RC111	- -
Method: EPA 7471 QC Batch: 9 Mercury, Total	808HG094 Sample ID: RI mg/kg		

Quality Control Report for Duplicate Analysis

Analida		Sample Result	Dupe Result	RPD	Control Limit	
Analyte Method: EPA 6010A QC Batch: 9808RC111 Arsenic, Total	Sample ID: 98080209-1 mg/kg	Date Prep: 0 1.5	8/28/1998 Date . 1.3	Anal: 08/31/1998 14	Analyst: GG 15	
Method: EPA 6010A QC Batch: 9808RC111 Barium, Total	Sample ID: 98080209-1 mg/kg	30.0	8/28/1998 Date 29.0	3	Analyst: GG 9	
Method: EPA 6010A QC Batch: 9808RC111 Cadmium, Total	Sample ID: 98080209-1 mg/kg	0.2	8/28/1998 Date 0.2	O	Analyst: GG 8	
Method: EPA 6010A QC Batch: 9808RC111 Chromium, Total	Sample ID: 98080209-1 mg/kg	Date Prep: 0 4.5	8/28/1998 Date 4.6	Anal: 08/31/1998 2	Analyst: GG 10	
Method: EPA 6010A QC Batch: 9808RC111 Lead, Total	Sample ID: 98080209-1 mg/kg	105.0	8/28/1998 Date 106.0	1	10	
Method: EPA 6010A QC Batch: 9808RC111 Selenium, Total	Sample ID: 98080209-1 mg/kg	Date Prep: 0 0.0	0.0 Date	Anal: 08/31/1998 0	Analyst: GG 10	
Method: EPA 6010A QC Batch: 9808RC111 Silver, Total	Sample ID: 98080209-1 mg/kg	Date Prep: 0 0.0	0.0 Date	Anal: 08/31/1998 0	Analyst: GG 9	
Method: EPA 7471 QC Batch: 9808HG094 Mercury, Total	Sample ID: 98080192-1 mg/kg	Date Prep: 0 0.00	08/28/1998 Date 0.00	Anal: 08/28/1998 0	Analyst: SH 9	
Method: EPA 5050/9252 QC Batch: 9808TX103 TX as Chloride	Sample ID: 98080192-1 mg/kg	Date Prep: 0	08/28/1998 Date 0	Anal: 08/28/1998 0	Analyst: SH 7	

Quality Control Report for LCS Analysis

Analyte		LCS Conc	LCS Percent Result Recovery	Lower Control Limit	Upper Control Limit
Method: EPA 6010A Arsenic, Total	QC Batch; 9808RC111	Sample ID: LCS 20.0 mg/kg	Date Prep: 08/28/1998 Date Anal: 08/31/1998 0.0 20.5 103		119
Method: EPA 6010A Barium, Total	QC Batch: 9808RC111	Sample ID: LCS 50.0 mg/kg	Date Prep: 08/28/1998 Date Anal: 08/31/1998 0.0 52.5 105	Analyst: GG 80	120
Method: EPA 6010A Cadmium, Total	QC Batch: 9808RC111	Sample ID: LCS 10.0 mg/kg	Date Prep: 08/28/1998 Date Anal: 08/31/1998 0.0 10.3 103	Analyst: GG 78	120
Method: EPA 6010A Chromium, Total	QC Batch: 9808RC111	Sample ID: LCS 10.0 mg/kg	Date Prep: 08/28/1998 Date Anal: 08/31/1998 0.0 10.3 103	Analyst: GG 80	123
Method: EPA 6010A Lead, Total	QC Batch: 9808RC111	Sample ID: LCS 10.0 mg/kg	Date Prep: 08/28/1998 Date Anal: 08/31/1998 0.0 10.4 104	Analyst: GG 77	124
Method: EPA 6010A Selenium, Total	QC Batch: 9808RC111	Sample ID: LCS 10.0 mg/kg	Date Prep: 08/28/1998 Date Anal: 08/31/1998 0.0 9.6 96	Analyst: GG	121
Method: EPA 6010A Silver, Total	QC Batch: 9808RC111	Sample ID: LCS 10.0 mg/kg	Date Prep: 08/28/1998 Date Anal: 08/31/1998 0.0 10.0 100	Analyst: GG	120
Method: EPA 7471 Mercury, Total	QC Batch: 9808HG094	Sample ID: LCS 0.17 mg/kg	Date Prep: 08/28/1998 Date Anal: 08/28/1998 0.00 0.17 100		122
Method: EPA 5050/9252 TX as Chloride	QC Batch: 9808TX103	Sample ID: LCS 1000 mg/kg	Date Prep: 08/28/1998 Date Anal; 08/28/1998 0 1000 100	Analyst SH 70	120

Quality Control Report for Spike Analysis

Analyte		Spike Amount	Sample Result	Spike Result	Percent Recovery	Lower Control Limit	Upper Control Limit
Method: EPA 6010A Arsenic, Total	QC Batch: 9808RC111	Sample ID: 98080207-1 20.0 mg/kg	Date Prep: 08/2 1.3	28/1998 Da 1 9.6	te Anal: 08/31/1998 92	Analyst: GG 70	114
Method: EPA 6010A Barium, Total	QC Batch: 9808RC111	Sample ID: 98080207-1 50.0 mg/kg	Date Prep: 08/2 4.2	28/1998 Da 46.3	ite Anal: 08/31/1998 84	Analyst GG 71	123
Method: EPA 6010A Cadmium, Total	QC Batch: 9808RC111	Sample ID: 98080207-1 10.0 mg/kg	Date Prep: 08/2 0.0	28/1998 Da 8.0	ite Anal: 08/31/1998 80	Analyst: GG 70	113
Method: EPA 6010A Chromium, Total	QC Batch: 9808RC111	Sample ID: 98080207-1 10.0 mg/kg	Date Prep: 08/2 2.4	28/1998 Da 10.9	ite Anal: 08/31/1998 85	Analyst: GG 69	126
Method: EPA 6010A Lead, Total	QC Batch: 9808RC111	Sample ID: 98080207-1 10.0 mg/kg	Date Prep: 08/2 2.2	28/1998 Da 11.4	ite Anal: 08/31/1998 92	Analyst GG 66	123
Method: EPA 6010A Selenium, Total	QC Batch: 9808RC111	Sample ID: 98080207-1 10.0 mg/kg	Date Prep: 08/3 0.0	28/1998 Da 8.0	ite Anal: 08/31/1998 80	Analyst: GG 59	107
Method; EPA 6010A Silver, Total	QC Batch: 9808RC111	Sample ID: 98080207-1 10.0 mg/kg	Date Prep: 08/2 0.0	28/1998 Da 9.0	ate Anal: 08/31/1998 90	Analyst: GG 65	114
Method: EPA 7471 Mercury, Total	QC Batch: 9808HG094	Sample ID: 98080202-3 0.17 mg/kg	Date Prep: 08/3 0.00	28/1998 Da 0.16	ate Anal: 08/28/1998 94	Analyst: SH 78	131
Method: EPA 5050/9252 TX as Chloride	QC Batch: 9808TX103	Sample ID: 98080202-3 1000 mg/kg	Date Prep: 08/3	28/1998 Da 920	ate Anal: 08/28/1998 92	Analyst: SH 74	113

APPENDIX K

SPECIFIC CAPACITY TEST DATA AND HYDRAULIC CONDUCTIVITY CALCULATIONS

HYDRAULIC CONDUCTIVITY GEOMETRIC MEAN

Aquifer parameters of hydraulic conductivity and transmissivity were calculated from the specific capacity test data using a computer program developed by Kasenow and Pare (1995) based on equations presented in Theis (1935), Lohman (1972) and Turcan (1962). Drawdown data from the well, as recorded by the data logger, was entered into the computer program along with required variables that characterize the aquifer (storage and well-loss coefficients), the pumping rate, and well dimensions. Hydraulic conductivity (K) values in the aquifer immediately surrounding the monitoring wells were calculated to be:

A902-MW03 = 3.53 feet/day

A902-MW05 = 5.03 feet/day

A902-MW06 = 4.60 feet/day

The average hydraulic conductivity was determined by calculating the geometric mean of the three values as follows:

$$= e^{\left[\frac{\ln x_1 + \ln x_2 + \ln x_n}{n}\right]}$$

$$= e^{\left[\frac{\ln x_1 + \ln x_2 + \ln x_3}{3}\right]}$$

$$= e^{\left[\frac{\ln(3.53 \text{ ft/day}) + \ln(5.03 \text{ ft/day}) + \ln(4.60 \text{ ft/day})}{3}\right]}$$

$$= e^{\left[\frac{4.40 \text{ ft/day}}{3}\right]}$$

$$= 4.34 \text{ ft/day}$$

Q/s

Date: 30-Aug-98

Firm: Tetra Tech NUS

Project: Truck Fill Stand, NAS Key West

Source: A902-MW03

Hydrogeologist: P. Calligan

Analysis: Specific Capacity

Well Id: 2-inch

Screen Length: 10-feet

Elevation TOC: 4.25

Comments:

Q = Pumping rate = gpm = 0.50

r = Radius of the pumping well = ft = 0.33

t = Time duration of pumping test = 32.00 min = 0.02222 days

t(o) = Time of zero drawdown = 0.00002030 min = 0.0000000141 days

Slope = ft = 0.13

 $T = Transmissivity = 1049.00 gpd/ft = 140.57 ft^2/day = 13.01 m^2/day$

Apparent storage coefficient = 0.000040

Aquifer thickness = b = ft = 40.00

Hydraulic conductivity = K = 26.23 gpd/sq Ft = 3.53 ft/day = 1.08 m/day

Field drawdown = s = ft = 1.64

Corrected drawdown = s = ft = 0.78

Field specific capacity = Q/s = gpm/ft = 0.30

Corrected specific capacity = Q/s = gpm/ft = 0.64

Apparent limit of cone of depression at steady-rate = r(0) = ft = 418.13

SE1000C Environmental Logger 09/18 08:29

Unit# 00761 Test 1

Setups:	INPUT	1
Type Mode I.D.	Level TOC 00000	(F)
Reference Linearity Scale factor Offset Delay mSEC	2.2 0.0 10.0 0.0 50.0	000 010 050

Step 0 08/30 10:03:33

Elapsed Time	INPUT 1
0.0000	2.266 2.266
0.0066	2.266
0.0100	2.266
0.0133	2.263
0.0166 0.0200	2.263
0.0233	2.253
0.0266	2.332
0.0300	2.440
0.0333	2.468
0.0366	2.471
0.0400	2.513
0.0433	2.544
0.0466	2.595
0.0500	2.636
0.0533	2.535
0.0566	2.617
0.0600	2.699
0.0633 0.0666	2.680 2.674
0.0700	2.683
0.0733	2.702
0.0766	2.699
0.0800	2.696

0.0833 0.0866 0.0900	2.696 2.696 2.699 2.696
0.0933	2.699
0.1000 0.1033 0.1066	2.699
0.1100 0.1133 0.1166	2.705
0.1166 0.1200	2.712
0.1255	2.715
0.1300 0.1333 0.1366 0.1400	2.715 2.718 2.718 2.724 2.721
0.1400 0.1433	2.728
0.1466 0.1500	2.724 2.728
0.1533 0.1566 0.1600	2.731 2.734 2.734 2.734 2.737
0.1600 0.1633 0.1666	2.131
0.1700	2.740
0.1766 0.1800 0.1833 0.1866	2.740 2.743 2.747 2.750 2.750 2.750
0.1900	2.750 2.750 2.750 2.753
0.1933 0.1966 0.2000	2.753
0.2033 0.2066	2.756 2.753
0.2100 0.2133	2.759
0.2166 0.2200 0.2233	2.759 2.762 2.765
0.2266 0.2300	2.769 2.769
0.2333 0.2366	2.772 2.775 2.772
0.2400	2.112

0.2433 0.2466 0.2500 0.2533 0.2566 0.2600 0.2633 0.2666 0.2700 0.2733 0.2766 0.2800 0.2833 0.2866	2.772 2.778 2.778 2.778 2.784 2.784 2.784 2.788 2.788 2.791 2.791 2.791 2.791 2.794 2.794 2.794 2.797 2.800 2.800 2.803 2.803 2.803 2.807 2.810 2.810 2.810
0.2000	2.794 2.794 2.794
0.2933 0.2966 0.3000 0.3033 0.3066	2.797 2.800 2.800 2.803 2.803
0.3033 0.3066 0.3100 0.3133 0.3166 0.3200 0.3233 0.3266 0.3300 0.3333 0.3500 0.3666 0.3833 0.4000 0.4166	2.803 2.803 2.807 2.807
0.3233 0.3266 0.3300 0.3333	2.807 2.807 2.810 2.810 2.810 2.813 2.822 2.829 2.835 2.851 2.883
0.3533 0.3500 0.3666 0.3833	2.810 2.813 2.822 2.829 2.835 2.851 2.883
0.4333	2.892
0.4666 0.4833 0.5000 0.5166	2.895 2.905 2.911 2.917
0.5333 0.5500 0.5666	2.920 2.927 2.936
0.5833 0.6000 0.6166 0.6333	2.939 2.946 2.955 2.958
0.6500 0.6666	2.965 2.968

0.6833 0.7000 0.7166 0.7333 0.7500 0.7666 0.7833 0.8000 0.8166 0.8333 0.8500 0.8666 0.9333 0.9000 0.9166 0.9333 1.0000 1.2000 1.4000 1.6000 1.8000 2.2000 2.4000 2.2000 2.4000 2.2000 2.4000 3.6000 3.6000 3.6000 3.6000 3.6000 4.0000 4.0000 4.0000 4.0000 4.0000 5.0000 5.0000 5.0000 5.0000 6.0000	2.944 2.987 2.986 3.003 3.009 3.015 3.022 3.031 3.037 3.044 3.053 3.056 3.056 3.164 3.202 3.237 3.268 3.325 3.345 3.325 3.345 3.325 3.455 3.455 3.456 3.457 3.562 3.588 3.588
5.2000	3 540
5.4000	3.547
5.6000	3.562
6 0000	3.3 <i>12</i> 3.588
6.2000	3.588
6.4000	3.607
6.6000	3.607
0.0000	3.007

7.0000 3.620 7.2000 3.633 7.4000 3.643 7.6000 3.643 8.0000 3.643 8.2000 3.653 8.4000 3.653 8.6000 3.663 8.8000 3.663 9.0000 3.663 9.2000 3.663 9.4000 3.683 9.4000 3.683 9.6000 3.683 9.6000 3.683 9.10000 3.683	552524147766922
12.0000 3.74	6
14.0000 3.790 16.0000 3.841	
18.0000 3.81	5
20.0000 3.838 22.0000 3.866	3
22.0000 3.860 24.0000 3.888	
26.0000 3.88	2
28.0000 3.88	
30.0000 3.899	5
32.0000 3.879	
34.0000 3.893 36.0000 3.910	

SE1000C Environmental Logger 09/18 08:33

Unit# 00761 Test 1

Setups:	INPUT 1
Type	Level (F)
Mode	TOC
I.D.	00000
Reference	2.260
Linearity	0.000
Scale factor	10.010
Offset	0.050
Delay mSEC	50.000

Step 1 08/30 10:40:18

Elapsed Time	INPUT 1
Elapsed Time 0.0000 0.0033 0.0066 0.0100 0.0133 0.0166 0.0200 0.0233 0.0266 0.0300 0.0333 0.0366 0.0400 0.0433 0.0466 0.0500 0.0533 0.0566 0.0600 0.0633	3.901 3.898 3.901 3.790 3.926 3.866 3.841 3.806 3.796 3.796 3.765 3.768 3.768 3.768 3.759 3.755 3.749 3.743 3.736
0.0633	3.736
0.0633 0.0666 0.0700 0.0733 0.0766 0.0800	3.736 3.733 3.727 3.721 3.717 3.708
0.0000	3.700

0.0833 0.0866 0.0900 0.0933 0.0966 0.1000 0.1033 0.1066 0.1100 0.1133 0.1166 0.1200 0.1233	3.698 3.695 3.689 3.679 3.679 3.664 3.657 3.651 3.638 3.635 3.626 3.616 3.610 3.604
0.1200 0.1233 0.1266 0.1300 0.1333 0.1366 0.1400 0.1433 0.1466 0.1500 0.1533 0.1566 0.1600 0.1633 0.1666 0.1700 0.1733	3.623 3.616 3.610 3.604 3.597 3.594 3.588 3.575 3.572 3.566 3.559 3.553 3.550 3.547 3.540 3.531 3.528 3.528
0.1700 0.1733 0.1766 0.1800 0.1833 0.1866 0.1900 0.1933 0.1966 0.2000 0.2033 0.2066 0.2100 0.2133 0.2166 0.2200 0.2233 0.2266	3.547 3.540 3.540 3.531 3.528 3.528 3.521 3.515 3.515 3.515 3.512 3.509 3.499 3.496 3.493 3.493
0.2300 0.2333 0.2366 0.2400	3.490 3.480 3.480 3.477

0.2433 0.2466	3.471 3.468
0.2500	3.468
0.2533 0.2566	3.461 3.461
0.2600	3.461
0.2633 0.2666	3.458 3.455
0.2700	3.455
0.2733	3.449
0.2733 0.2766 0.2800	3.445 3.442
0.2833	3.439
0.2866 0.2900	3.455 3.455 3.449 3.445 3.442 3.439 3.442 3.436 3.436 3.426 3.423 3.426 3.423
0.2933	3.436 3.433 3.426 3.430 3.426 3.423
0.2933 0.2966 0.3000	3.426
0.3000	3.430 3.426
0.3066	3.423
0.3100 0.3133	3.420 3.417
0.3166	3.417 3.414
0.3100 0.3133 0.3166 0.3200 0.3233 0.3266 0.3300 0.3333 0.3500	3 414
0.3233	3.411 3.411 3.404 3.404
0.3266	3.404
0.3333	3.404 3.395
0.3666 0.3833	3.382
0.3666 0.3833 0.4000 0.4166 0.4333	3.395 3.382 3.373 3.357 3.351 3.338 3.332
0.4000 0.4166 0.4333	3.351
	3.338
0.4500	3.332 3.322
0.4833	3.313
0.5000 0.5166	3.306 3.297
0.5166 0.5333	
0.5500	3.287
0.5666	3.281 3.275
0.6000	3.265
0.6166	3.259
0.6333	3.253 3.246
0.6666	3.240

0.6833 0.7000 0.7166 0.7333 0.7500 0.7666 0.7833 0.8000 0.8166 0.8333 0.8500 0.8666 0.8333 0.9500 0.9166 0.9333 0.9500 0.9666 0.9833 1.0000 1.2000 1.4000 1.6000 1.8000 2.2000 2.4000 2.4000 2.4000 2.6000 3.4000 3.6000 3.8000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000	3.237 3.227 3.224 3.218 3.211 3.205 3.199 3.189 3.177 3.167 3.161 3.154 3.145 3.129 3.126 3.075 2.870 2.870 2.870 2.870 2.870 2.870 2.686 2.7743 2.743 2.743 2.743 2.743 2.563 2.5547 2.516 2.500 2.490
4.2000 4.4000 4.6000 4.8000	2.563 2.547
5.8000 6.0000 6.2000 6.4000 6.6000	2.456 2.446 2.440 2.430 2.421

6.8000	2.418
7.0000	2.408
7.2000	2.405
7.4000	2.395
7.6000	2.389
7.8000	2.386
8.0000	2.380
8.2000	2.377
8.4000	2.370
8.6000	2.370
8.8000	2.364
9.0000	2.358
9.2000	2.358
9.4000	2.354
9.6000	2.354
9.8000	2.348
10.0000	2.345
12.0000	2.323
14.0000	2.313
16.0000	2.304
18.0000	2.297
20.0000	2.297
22.0000	2.291
24.0000	2.291
26.0000	2.288
28.0000	2.291
30.0000	2.282
32.0000	2.285

Q/s

Date: 30-Aug-98

Firm: Tetra Tech NUS

Project: Truck Fill Stand, NAS Key West

Source: A902-MW05

Hydrogeologist: P. Calligan

Analysis: Specific Capacity

Well Id: 2-inch

Screen Length: 10-feet

Elevation TOC: 4.46

Comments:

Q = Pumping rate = gpm = 0.51

r = Radius of the pumping well = ft = 0.33

t = Time duration of pumping test = 35.00 min = 0.02431 days

t(o) = Time of zero drawdown = 0.00001420 min = 0.0000000099 days

Slope = ft = 0.09

 $T = Transmissivity = 1499.00 gpd/ft = 200.87 ft^2/day = 18.59 m^2/day$

Apparent storage coefficient = 0.000040

Aguifer thickness = b = ft = 40.00

Hydraulic conductivity = K = 37.47 gpd/sq Ft = 5.03 ft/day = 1.52 m/day

Field drawdown = s = ft = 1.21

Corrected drawdown = s = ft = 0.58

Field specific capacity = Q/s = gpm/ft = 0.42

Corrected specific capacity = Q/s = gpm/ft = 0.89

Apparent limit of cone of depression at steady-rate = r(o) = ft = 522.74

SE1000C Environmental Logger 09/18 08:39

Unit# 00761 Test 2

Setups:	INPUT	1
Type	Level	(F)
Mode	TOC	
I.D.	00000	
Reference	2.6	520
Linearity	0.0	000
Scale factor	10.0	10
Offset	0.0	50
Delay mSEC	50.0	000

Step 0 08/30 11:59:16

Elapsed Time	INPUT 1
0.0000	2.620
0.0033	2.616
0.0066	2.620
0.0100	2.620
0.0133	2.803
0.0166	2.977
0.0200	2.537
0.0233	2.724
0.0266	2.831
0.0300	2.752
0.0333	2.891
0.0366	2.863
0.0400	2.914
0.0433	2.952
0.0466	2.986
0.0500	2.718
0.0533	2.967
0.0566	3.053
0.0600	2.945
0.0633	3.018
0.0666	2.958
0.0700	3.043
0.0733	2.974
0.0766	3.024
0.0800	2.996

0.0833	2.999
0.0866	2.999
0.0900	2.999
	2.005
0.0933	3.005
0.0966	2.996
	2.999
0.1000	2.999
0.1033	2.996 2.999 3.002
0.1066	2.996
0.1000	3.002 2.996 2.996
0.1100	2.996
0.1133	2.996
0.1166	3.002
0.1100	0.002
0.1200	2.996
0.1233 0.1266 0.1300	3.002 2.996 2.996 3.002 2.999 2.999
0.1266	3 002
0.1200	2.002
0.1300	2.999
0.1333	2.999 2.999
0.1333 0.1366	2.999
0.1300	2.999
0.1400	3.002
U 1/33	2.999
0.1466	2.999
0.1400	2.999
0.1500	3.002
0.1466 0.1500 0.1533 0.1566	2.996 2.996 3.002 2.996 3.002 2.999 2.999 2.999 3.002 2.999 3.002 3.005
0.1566	3.005
0.1500	2.999 2.999 3.002 3.005 3.005 2.999
0.1600	3.005 2.999 3.005 3.002 3.009
0.1633	3.005
0.1666	3.002
	3.009
0.1700	3.009
0.1733 0.1766 0.1800 0.1833	3.009 3.002 3.002 3.005 3.002
0.1766	3.002
0.1800	3.005
0.1000	2.000
0.1833	3.002
0.1866	3.012
0.1866 0.1900 0.1933	3.002 3.012 3.005 3.009
0.1900 0.1933	3.009
	3.009
0.1966	3.002 3.012
0.2000	3.012
0.2033	3.015
0.2033	
0.2066	3.002
0.2100	3.012
	3 000
0.2133	3.009
0.2166 0.2200	3.012 3.009 3.009 3.009 3.012
0.2200	3.009
0.2233	3 012
0.2233	2.012
0.2266	3.012
0.2300	3.015
0.2333	3.009
	2.009
0.2366	3.015
0.2400	3.015 3.018

0.6833 0.7000 0.7166 0.7333 0.7500 0.7666 0.7833 0.8000 0.8166 0.8333 0.8500 0.8666 0.8833 0.9000 0.9166 0.9333 0.9500 0.9666 0.9833 1.0000 1.4000 1.4000 1.4000 2.2000 2.4000 2.2000 2.4000 2.2000 3.4000 3.6000 3.6000 3.6000 3.6000 4.4000 4.6000 4.6000 5.2000 5.2000 5.4000 5.6000	3.129 3.135 3.138 3.148 3.148 3.140 3.154 3.160 3.157 3.176 3.177 3.186 3.195 3.195 3.195 3.195 3.2284 3.375 3.454 3.454 3.454 3.454 3.454 3.454 3.454 3.454 3.454 3.454 3.454 3.454 3.454 3.4567 3.562 3.578 3.581 3.635 3.638
4.8000 5.0000 5.2000	3.606 3.613 3.619 3.635
5.8000 6.0000 6.2000 6.4000 6.6000	3.638 3.641 3.647 3.654 3.660 3.660

6.8000	3.669
7.0000	3.669
7.2000	3.676
7.4000	3.682
7.6000	3.688
7.8000	3.688
8.0000	3.695
8.2000	3.698
8.4000	3.695
8.6000	3.698
8.8000	3.714
9.0000	3.717
9.2000	3.714
9.4000	3.717
9.6000	3.730
9.8000	3.717
10.0000	3.726
12.0000	3.752
14.0000	3.758
16.0000	3.771
18.0000	3.780
20.0000	3.796
22.0000	3.805
24.0000	3.821
26.0000 28.0000	3.824
28.0000	3.821
30.0000	3.834
32.0000	3.840
34.0000	3.831

Unit# 00761 Test 2

Setups:	INPUT	1
Type Mode I.D.	Level TOC 00000	(F)
Reference	2.6	
Linearity	0.0	00
Scale factor	10.0	10
Offset	0.0	50
Delay mSEC	50.0	00

Step 1 08/30 12:34:06

INPUT 1
3.837
3.831
3.609
3.979
3.714
3.824
3.733
3.726
3.752
3.704
3.695
3.701
3.679
3.669
3.666
3.657
3.669
3.628
3.638
3.641
3.619
3.632
3.609
3.622
3.606

0.0833	3.609
	3.603
0.0866	3.603
0.0900 0.0933	3.597
0.0933	3.590
0.0966	3.590
0.1000	3 590
0.1000	2.530
0.1033	3.304
0.1066	3.578
0.1100	3.575
0.1000 0.1033 0.1066 0.1100 0.1133 0.1166 0.1200	3.571
0.1166	3.575
0.1200	3.565
0.1100 0.1133 0.1166 0.1200 0.1233	3 565
0.1066 0.1100 0.1133 0.1166 0.1200 0.1233 0.1266	3 565
0.1200	3.565
0.1300	3.549
0.1300 0.1333 0.1366	3.568
0.1366	3.527
0.1400	3.603 3.597 3.590 3.590 3.584 3.578 3.575 3.575 3.565 3.565 3.565 3.565 3.565 3.565 3.575
0.1233 0.1266 0.1300 0.1333 0.1366 0.1400 0.1433	3.527
0.1466	3 552
0.1500	2.532
0.1500	3.555
0.1533	3.537
0.1566	3.549
0.1500 0.1533 0.1566 0.1600 0.1633 0.1666 0.1700 0.1733 0.1766 0.1800 0.1833 0.1866 0.1900 0.1933	3.603 3.597 3.590 3.590 3.578 3.575 3.575 3.565 3.565 3.565 3.5565 3.5565 3.5565 3.5565 3.5533 3.553
0.1633	3.533
0.1666	3.533
0.1700	3.530
0.1733	3 530
0.1755	3.550
0.1766 0.1800	3.510
0.1800	3.530
0.1833 0.1866	3.524
0.1866	3.514
0.1900	3.514
0.1900 0.1933	3.524
0.1966	3 502
0.2000	3.502
	2.514
0.2033	3.514 3.511 3.508 3.511
0.2066	3.508
0.2100	3.511
0.2133	3.508
0.2166	2 400
0.2200	3.492 3.492 3.524 3.480
0.2233	3 524
0.2266	3 490
0.2200	3.400
0.2300	3.505 3.492
0.2333	3.492
0.2366	3.486
0.2400	3.492

0.2433	3.496 3.480 3.492 3.477
0.2466 0.2500 0.2533	3.480
0.2500	2 400
0.2500	3.492
0.2533	3.477
0.2566	3.492
	3.432
0.2600	3.470
0.2633	3.480
0.2666	2 177
0.2000	3.492 3.477 3.492 3.470 3.480 3.477 3.480
0.2700	3.480
0.2733	3.477
0.2766	2 470
0.2600 0.2633 0.2666 0.2700 0.2733 0.2766 0.2800	3.470
0.2800	3.480
0.2833	3.467
0 2066	3.477 3.470 3.480 3.467 3.464 3.464 3.473
0.2866 0.2900	3.470
0.2900	3.464
0.2933	3.464
0.2066	2 472
0.2966	3.473
0.3000	3.470 3.480 3.477 3.480 3.477 3.470 3.467 3.464 3.464 3.464 3.473
0.2833 0.2866 0.2900 0.2933 0.2966 0.3000 0.3033	3.473 3.454 3.470
0.3066	3 450
0.3066	3.458
0.3100	3.458
0.3133	3.461
0.3166	3 150
0.3100	3.430
0.3000 0.3033 0.3066 0.3100 0.3133 0.3166 0.3200 0.3233 0.3266	3.470 3.458 3.458 3.461 3.458 3.454 3.454
0.3233	3.454 3.458 3.451
0.3266	3.458
0.3300 0.3333 0.3500 0.3666 0.3833 0.4000	2.450
0.3300	3.451 3.451 3.442 3.435 3.426 3.420 3.413 3.407
0.3333 0.3500	3.451
0.3500	3.442
0.3666	2 425
0.3666	3.433
0.3833 0.4000	3.435 3.426
0.4000	3.420
0 4166	3.413
0.4166 0.4333	3.413 3.407
0.4333	3.407
0.4500	3.397
0.4666	3.391
	3.391
0.4833	3.385 3.375
0.5000	3.375
0.5166	3.369
0.5100	3.309
0.5333	3.363
0.5500	3.356
0.5666	3 350
	3.330
0.5833	3.344
0.6000	3.337
0.6166	3.363 3.356 3.350 3.344 3.337 3.334
	3.391 3.385 3.375 3.369 3.356 3.356 3.350 3.344 3.337 3.334 3.325 3.318
0.6333	3.325
0.6500	3.318
0.6666	3.315

0.6833	3.309
0.7000 0.7166	3.303 3.296 3.293 3.287 3.280 3.277 3.274 3.268 3.265 3.258 3.252 3.246 3.243 3.236 3.236 3.236 3.237 3.227 3.220 3.214 3.151 3.107 3.135
0.7333	3.293
0.7500 0.7666	3.280
0.7833 0.8000	3.277
0.8166	3.268
0.8333 0.8500	3.277 3.274 3.268 3.265 3.258 3.252
0.8666	3.252
0.8833 0.9000	3.246 3.243
0.9166	3.236
0.9333 0.9500 0.9666	3.236
0.9666 0.9833	3.236 3.236 3.230 3.227 3.220 3.214
1.0000	3.214
0.9500 0.9666 0.9833 1.0000 1.2000	3.151 3.107
1.6000	3.135
1.2000 1.4000 1.6000 1.8000 2.0000 2.2000 2.4000 2.6000 2.8000 3.0000 3.2000 3.4000 3.6000 3.8000	3.107 3.135 3.053 3.015 2.986 2.961 2.942 2.917
2.2000 2.4000	2.986
2.4000	2.961 2.942 2.917
2.8000 3.0000	2.917 2.904
3.2000	2.885
3.4000 3.6000	2.904 2.885 2.873 2.854 2.841
3.8000	2.854 2.841
4.0000 4.2000	2.831 2.819
4.4000 4.6000	2.800 2.803
4.8000	2.790
5.0000 5.2000	2.784 2.774
5.4000	2.768
5.4000 5.6000 5.8000 6.0000	2.759 2.752
6.0000 6.2000	2.752 2.746 2.743
6.4000	2.740
6.6000	2.727

6.8000	2.727
7.0000	2.721
7.2000	2.714
7.4000	2.714
7.6000	2.708
7.8000	2.708
8.0000	2.705
8.2000	2.702
8.4000	2.699
8.6000	2.692
8.8000	2.689
9.0000	2.689
9.2000	2.686
9.4000	2.683
9.6000	2.683
9.8000	2.683
10.0000	2.676
12.0000	2.657
14.0000	2.648
16.0000	2.638
18.0000	2.629
20.0000	2.626
22.0000	2.616
24.0000	2.616
26.0000	2.613
28.0000	2.607

Q/s

Date: 30-Aug-98

Firm: Tetra Tech NUS

Project: Truck Fill Stand, NAS Key West

Source: A902-MW06

Hydrogeologist: P. Calligan

Analysis: Specific Capacity

Well Id: 2-inch

Screen Length: 10-feet

Elevation TOC: 4.00

Comments:

Q = Pumping rate = gpm = 0.48

r = Radius of the pumping well = ft = 0.33

t = Time duration of pumping test = 51.75 min = 0.03594 days

t(o) = Time of zero drawdown = 0.00001552 min = 0.0000000108 days

Slope = ft = 0.09

 $T = Transmissivity = 1372.00 gpd/ft = 183.85 ft^2/day = 17.01 m^2/day$

Apparent storage coefficient = 0.000040

Aguifer thickness = b = ft = 40.00

Hydraulic conductivity = K = 34.30 gpd/sq Ft = 4.60 ft/day = 1.40 m/day

Field drawdown = s = ft = 1.27

Corrected drawdown = s = ft = 0.60

Field specific capacity = Q/s = gpm/ft = 0.38

Corrected specific capacity = Q/s = gpm/ft = 0.79

Apparent limit of cone of depression at steady-rate = r(o) = ft = 608.11

Unit# 00761 Test 0

Setups:	INPUT	1
Type Mode I.D.	Level TOC 00000	(F)
Reference Linearity Scale factor Offset Delay mSEC	2.2 0.0 10.0 0.0 50.0	000 010 050

Step 0 08/30 06:55:59

Elapsed Time	INPUT 1
0.0000	2.240
0.0033	2.243
0.0066	2.243
0.0100	2.243
0.0133	2.243
0.0166	2.243
0.0200	2.243
0.0233	2.240
0.0266	2.240
0.0300	2.243
0.0333	2.243
0.0366	2.243
0.0400	2.243
0.0433	2.243
0.0466	2.240
0.0500	2.246
0.0533	2.315
0.0566	2.461
0.0600	2.141
0.0633	2.369
0.0666	2.375
0.0700	2.309
0.0733	2.407
0.0766	2.394
0.0800	2.417

0.0833 0.0866 0.0900 0.0933 0.0966 0.1000 0.1033 0.1066 0.1100 0.1233 0.1266 0.1200 0.1233 0.1266 0.1300 0.1333 0.1466 0.1500 0.1433 0.1466 0.1500 0.1533 0.1666 0.1700 0.1633 0.1666 0.1700 0.1733 0.1666 0.1700 0.1733 0.1666 0.1700 0.1733 0.1666 0.1700 0.1833 0.1666 0.1700 0.1933 0.1966 0.1900 0.1933 0.1966 0.2000 0.2033 0.2166 0.2100 0.2233 0.2266 0.2200 0.2233 0.2266	2.436 2.497 2.497 2.537 2.5307 2.5307 2.5330 2.5330 2.5330 2.5330 2.5330 2.5546 2.5555 2.5577 2.5577 2.5584 2.5577 2.5584 2.5577 2.5584 2.5577 2.5584 2.5577 2.5584 2.5577 2.5584 2.5577 2.5584 2.5577 2.5584 2.5577 2.5584
0.2166 0.2200	2.597 2.600 2.600 2.606 2.613 2.613 2.619 2.616

0.2433 0.2466 0.2500 0.2533 0.25666 0.26600 0.2633 0.2666 0.2700 0.2833 0.2866 0.29900 0.2933 0.2966 0.3033 0.3166 0.3133 0.3166 0.3233 0.3266 0.3333 0.3666 0.3333 0.3666 0.3333 0.3666 0.3333 0.3666	2 2 2 2 2 2	2.632 6341 2.6447 4.64547 6.655666666773369225 6.66666773369225 6.66898877755644077999
0.5333 0.5500 0.5666	2 2 2 2 2 2	2.806 2.809 2.815

0.6833 0.7000 0.7166 0.7333 0.7500 0.7666 0.8500 0.8163 0.8506 0.88500 0.88500 0.9333 0.99166 0.99333 0.99500 0.9666 0.9833 0.99666 0.9833 0.9000 1.2000 1.4000 1.6000 1.8000 2.2000 2.4000 2.6000 3.6000 3.6000 3.6000 4.6000 4.6000 4.6000 5.6000 5.6000 5.6000 5.6000 6.2000	2.837 2.844 2.847 2.853 2.853 2.859 2.866 2.872 2.881 2.888 2.888 2.894 2.900 2.907 2.913 2.907 2.997 2.996 3.008 3.055 3.078 3.055 3.169 3.116 3.128 3.147 3.150 3.157 3.163 3.169 3.179 3.188 3.198 3.201 3.217 3.217 3.223 3.233 3.233
5.2000	3.207
5.4000	3.214
5.6000	3.217
5.8000	3.217
6.0000	3.223
6.2000	3.233
6.4000	3.233
6.6000	3.233

6.8000	3.239
7.0000	3.242
7.2000	3.242
7.4000	3.245
7.6000	3.245
7.8000	3.252
8.0000	3.261
8.2000	3.267
8.4000	3.274
8.6000	3.277
8.8000	3.286
9.0000	3.289
9.2000	3.293
9.4000	3.296
9.6000	3.302
9.8000 10.0000	3.302
	3.308 3.327
12.0000 14.0000	3.334
16.0000	3.343
18.0000	3.245 3.245 3.252 3.261 3.267 3.274 3.277 3.286 3.293 3.296 3.302 3.302 3.302 3.302 3.303 3.343 3.343 3.375 3.365 3.381
20.0000	3.365
20.0000 22.0000	3.381
24.0000	3.391
26.0000	3.400
28.0000	3.397
30.0000	3.403
32.0000	3.410
34.0000	3.410
36.0000	3.419
38.0000	3.413
40.0000	3.441
42.0000	3.441
44.0000	3.444 3.441
46.0000	3.410 3.419 3.413 3.441 3.441 3.444 3.448 3.448
	3.448
50.0000 52.0000	3.448
32.0000	3.434

Unit# 00761 Test 0

Setups:	INPUT	1
Type Mode I.D.	Level TOC 00000	(F)
Reference Linearity Scale factor Offset Delay mSEC	2.2 0.0 10.0 0.0 50.0	00 10 50

Step 1 08/30 07:48:50

Elapsed	Time	INPUT	1
0.000	00	3.4	 54
0.003		3.4	
0.006		3.4	
0.010		3.4	
0.013		3.4	
0.016		3.4	
0.020	00	3.4	
0.023	33	3.3	
0.026	56	3.4	
0.030	0	3.3	
0.033	33	3.4	19
0.036	56	3.3	81
0.040	00	3.3	81
0.043	33	3.3	75
0.046	6	3.3	72
0.050	00	3.3	65
0.053		3.3	59
0.056	6	3.3	56
0.060	00	3.3	53
0.063	33	3.3	50
0.066		3.3	46
0.070		3.3	
0.073		3.3	37
0.076		3.3	
0.080	0	3.3	24

0.2166 3.144 0.2200 3.138	0.0833 0.0866 0.0900 0.0933 0.0966 0.1000 0.1033 0.1066 0.1100 0.1233 0.1266 0.1200 0.1233 0.1266 0.1300 0.1333 0.1466 0.1500 0.1533 0.1466 0.1500 0.1533 0.1666 0.1700 0.1633 0.1666 0.1700 0.1733 0.1666 0.1700 0.1733 0.1666 0.1700 0.1733 0.1666 0.1700 0.1833 0.1666 0.1700 0.1733 0.1666 0.1900 0.1933 0.1966 0.2000 0.2033 0.2066 0.2100 0.2133 0.2166 0.2200	3.318 3.312 3.308 3.305 3.299 3.293 3.289 3.289 3.274 3.274 3.264 3.255 3.252 3.242 3.239 3.220 3.217 3.207 3.207 3.207 3.198 3.195 3.188 3.179 3.176 3.172 3.169 3.173 3.153 3.153 3.150 3.144 3.138 3.131 3.109 3.106
	0.2100	3.153 3.150 3.144
	0.2266 0.2300 0.2333	3.119 3.109 3.106
0.2233 3.131 0.2266 3.119 0.2300 3.109 0.2333 3.106	0.2366 0.2400	3.097 3.090

0.2433 0.2466 0.2500 0.2533 0.2566 0.2600 0.2633 0.2666 0.2700 0.2733 0.2766 0.2800	3.078 3.071 3.062 3.052 3.024 3.011 3.002 2.998 2.989 2.989 2.983 2.973 2.961 2.957
0.2800 0.2833 0.2866 0.2900 0.2933 0.2966 0.3000 0.3033 0.3066 0.3100 0.3133 0.3166 0.3200 0.3233	2.973 2.961 2.957 2.951 2.948 2.942 2.938 2.932 2.926 2.926 2.923 2.923 2.923 2.923
0.3300 0.3333 0.3500 0.3666 0.3833 0.4000	2.916 2.913 2.913 2.907 2.866 2.847 2.840 2.837 2.834
0.4166 0.4333 0.4500 0.4666 0.4833 0.5000 0.5166 0.5333 0.5500 0.5666	2.825 2.825 2.818 2.818 2.818 2.815 2.815 2.812 2.809
0.5833 0.6000 0.6166 0.6333 0.6500 0.6666	2.806 2.799 2.796 2.793 2.790 2.787

0.6833 0.7000 0.7166 0.7333 0.7500 0.7666	2.783 2.777 2.774 2.768 2.768 2.768 2.752 2.745 2.736 2.736 2.736 2.730 2.727 2.720 2.720 2.714 2.711 2.708 2.5657 2.5657 2.565 2.543 2.543 2.489 2.448 2.448 2.448 2.439 2.436
0.7833	2.764 2.758
0.8166	2.758 2.752 2.745 2.745 2.739 2.736 2.730 2.727 2.720 2.720 2.714 2.711 2.708 2.657 2.622
0.8333 0.8500 0.8666 0.8833 0.9000	2.745 2.745 2.739 2.736 2.736 2.730 2.727 2.720 2.720 2.714 2.711 2.708 2.657
0.8666	2.736
	2.730
0.9166	2.727
0.9333 0.9500 0.9666	2.720
0.9666 0.9833	2.714 2.711
1.0000	2.708
1.2000 1.4000	2.657
1.6000	2.594
2.0000	2.565
2.2000	2.543
2.4000	2.594 2.565 2.584 2.543 2.511 2.489 2.486
2.8000	2.486
3.2000	2.474 2.461
3.4000	2.448
1.4000 1.6000 1.8000 2.0000 2.2000 2.4000 2.6000 2.8000 3.0000 3.2000 3.4000 3.6000 3.8000 4.0000	2.594 2.565 2.584 2.543 2.511 2.489 2.486 2.474 2.461 2.448 2.439 2.436 2.429
4.0000 4.2000	2.429
4.4000	2.417
4.6000 4.8000	2.410 2.404 2.398 2.398
5.0000	2.398
5.2000 5.4000	2.398
5.6000 5.8000	2.391 2.385 2.385
6.0000	2.385
6.2000	2.382 2.375
6.4000 6.6000	2.391 2.385 2.385 2.382 2.375 2.372 2.372

6.8000	2.369
7.0000	2.366
7.2000	2.360
7.4000	2.360
7.6000	2.356
7.8000	2.356
8.0000	2.350
8.2000	2.350
8.4000	2.347
8.6000	2.347
8.8000	2.344
9.0000	2.341
9.2000	2.341
9.4000	2.338
9.6000	2.338
9.8000	2.338
10.0000	2.334
12.0000	2.325
14.0000	2.309
16.0000	2.300
18.0000	2.296
20.0000	2.290
22.0000	2.287
24.0000	2.287
26.0000	2.281
28.0000	2.281
30.0000	2.281
32.0000	2.277
34.0000	2.281
36.0000	2.277

APPENDIX L

GROUNDWATER GRADIENT AND FLOW CALCULATIONS

GROUNDWATER FLOW GRADIENT

The groundwater flow gradient was determined using the following equation:

$$i = \frac{h_1 - h_2}{d}$$

where:

i = the hydraulic gradient

h₁ = the water elevation at point 1

 h_2 = the water elevation at point 2

d = the distance between point 1 and point 2

The distance and groundwater elevations were obtained from Figure 3-2.

The gradient across the site was calculated after constructing groundwater contours from the October 2, 1998, depth to water data, determining the perpendicular distance between two of these contours, and utilizing the following calculation:

$$i = \frac{2.10 \text{ ft} - 2.00 \text{ ft}}{85 \text{ ft}}$$

$$i = \frac{0.10 \text{ ft}}{85 \text{ ft}}$$

$$i = 0.001 \text{ ft/ft}$$

GROUNDWATER FLOW VELOCITY

Potential movement of groundwater at the site may be described in terms of transportation by natural flow system in the saturated zone, assuming groundwater flow follows Darcy's Law. Darcy's Law may be expressed as:

$$V = \left(\frac{K}{n}\right) x i$$

where:

V = average velocity

K = hydraulic conductivity = 4.34 ft/day

n = effective porosity (assumed) = 0.30

i = average hydraulic gradient = 0.001 ft/ft

therefore:

$$V = \left(\frac{4.34 \text{ ft/day}}{0.30}\right) \times 0.001 \text{ ft/ft}$$

$$V = 0.02 \text{ ft/day}$$

APPENDIX M

TIDAL SURVEY DATA

Unit# 00761 Test 3

Setups:	INPUT 1
Type	Level (F)
Mode	TOC
I.D.	00000
Reference	2.230
Linearity	0.000
Scale factor	10.010
Offset	0.050
Delay mSEC	50.000

Step 0 08/31 05:43:05

Elapsed Time	INPUT 1
0.0000	2.233
30.0000	2.252
60.0000	2.267
90.0000	2.280
120.000	2.302
150.000	2.321
180.000	2.334
210.000	2.350
240.000	2.356
270.000	2.372
300.000	2.375
330.000	2.372
360.000	2.369
390.000	2.369
420.000	2.366
450.000	2.356
480.000	2.366
510.000	2.359
540.000	2.356
570.000	2.353
600.000	2.353
630.000	2.359
660.000	2.362
690.000	2.362
720.000	2.362

750.000	2.369
780.000	2.372
810.000	2.378
840.000	2.381
870.000	2.372
900.000	2.375
930.000	2.372
960.000	2.366
990.000	2.362
1020.00	2.356
1050.00	2.34.7
1080.00	2.334
1110.00	2.324
1140.00	2.312
1170.00	2.296
1200.00	2.290
1230.00	2.277
1260.00	2.264
1290.00	2.258
1320.00	2.252
1350.00	2.245
1380.00	2.255
1410.00	2.258
1440.00	2.261
1470.00	2.280